English

English

Get a Quote
Products

Hot Products

Company News

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

What are the differences between globe valves and gate valves?
What are the differences between globe valves and gate valves?
2025-12-12

In industrial piping systems, globe valves and gate valves are two of the most commonly used shutdown valves. Although both are designed for starting and stopping fluid flow, they differ significantly in structural design, operating principles, application scenarios, and overall performance. Understanding these differences helps engineers make informed selections that ensure system efficiency, reliability, and cost-effectiveness.   I. Key Differences in Structure and Operating Principles   1. Different opening and closing mechanisms Globe Valve: The disc moves up and down along a path perpendicular to the flow direction. Shutoff is achieved when the disc and seat sealing surfaces come into full contact. Gate Valve: The gate moves vertically in a manner similar to a “gate” that is either fully open or fully closed, with sealing achieved through surface compression.  This means that globe valves are suitable for precise throttling, while gate valves are mainly used for full open or full shut service.   2. Flow path design differences A globe valve has an S-shaped flow path that forces the medium to change direction, resulting in higher flow resistance. A gate valve features a straight-through flow path with minimal resistance and low pressure drop, making it better suited for long-distance transmission.   II. Differences in Application Scenarios   1. Throttling vs. On/Off Service Globe valves can be used for throttling and flow regulation, making them suitable for applications requiring high sealing performance and precise flow control, such as steam, cooling water, and various process media.   Gate valves are not suitable for throttling, as operating them in a partially open position may cause gate vibration, damage to the sealing surfaces, and fluid-induced impact. Gate valves are ideal for large-diameter pipelines where low flow resistance is required and switching frequency is relatively low, including oil transportation, water supply and drainage, and power plant systems.   2. Size range and installation space Globe valves are generally used in small to medium sizes (more common below DN50). Their body structure is heavier and requires more installation space. Gate valves are suitable for medium to large sizes. Due to their simpler design, they offer a cost advantage in larger dimensions.   III. Sealing Performance and Pressure Ratings   1. Differences in sealing surface design The globe valve features a tapered sealing surface, which achieves tight shutoff through axial compression, making it easier to obtain reliable sealing performance. The gate valve uses either parallel or wedge-type sealing surfaces. Its sealing effectiveness depends largely on the pressure applied by the gate and is more influenced by the system’s medium pressure.   2. Pressure and temperature adaptability Both valve types are suitable for medium- to high-pressure and high-temperature applications....

Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
2025-12-05

Butterfly valves are widely used in industrial piping systems due to their compact structure, lightweight design, and quick operation. They are commonly applied in water treatment, chemical, power, oil, and gas industries. However, when dealing with industrial standards across different countries and regions, selecting a butterfly valve that meets the relevant specifications is crucial. This article provides a detailed analysis of butterfly valve design and selection requirements based on three key standards: API 609, ISO 5752, and GB/T 12238.   1. API 609 — American Petroleum Institute Standard   API 609 is the American Petroleum Institute (API) standard for metal-seated butterfly valves, primarily used in the oil, gas, and chemical industries. The standard defines valve structure, materials, dimensions, and pressure ratings to ensure reliable performance under high temperature, high pressure, and corrosive media conditions.   Key points include: ● Pressure Ratings: Covers Class 150 to 1500, accommodating various service conditions. ● Body and Disc Design: Metal-to-metal sealing requires precise alignment between disc and seat to prevent leakage under high temperature or high pressure. ● Testing and Inspection: Includes shell tests, seat leakage tests, and operational performance checks to ensure valve safety and reliability.   For high-temperature steam or high-pressure oil and gas pipelines, selecting a butterfly valve compliant with API 609 can significantly reduce leakage risk and extend equipment lifespan.   2. ISO 5752 — International Standard Organization Standard   ISO 5752 is the International Organization for Standardization (ISO) standard that specifies end dimensions and flange connection sizes for valves. It defines the face-to-face dimensions, flange sizes, and connection methods for butterfly valves, providing a consistent interface specification for industrial users worldwide.   Key points include: ● Face-to-Face Dimensions: Specifies valve lengths for different nominal diameters to ensure compatibility with piping systems. ● Flange Dimensions: Ensures valves match international standard pipe fittings, such as ANSI or DIN flanges. ● Interchangeability: Butterfly valves designed according to ISO 5752 can be replaced or serviced globally without redesigning the pipeline interface.   ISO 5752 is particularly suitable for multinational engineering projects, ensuring the universality of butterfly valves across different plants and systems.   3. JB/T8527 — Chinese National Standard   JB/T8527 is the Chinese national standard specifying the dimensions, structure, and testing requirements for metal hard-seal butterfly valves. It is widely applied in domestic industrial projects such as water conservancy, power, and petrochemical industries, serving as an important reference for procurement and acceptance.   Key ...

Globe Valve
加载中...

DN15 PN160 T Pattern Globe Valve SW Alloy Steel

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    F5
  • Method of Operation:

    handwheel
Inquiry now
Product Detail

Quick Detail

Type

Globe Valve

Size

DN15

DesignPressure

PN160

Construction

Tee Pattern

Connection

Socket Welded

Design & Manufacture

BS5352

Socket Weld

ANSI B16.11

Test & Inspection 

EN12266

Body Material

A182 F5+STL

Trim Material

A276 410; STL

Media

WOG

 

Description

--Tee Pattern is the most common type of globe valve with a z shaped diaphragm.

--The seat is oriented horizontally allowing the stem and disk to travel perpendicular to the horizontal line. This alsocontribute to low flow coefficient and higher pressure drop.

 

Features

--Good shutoff capability

--Moderate to good throttling capability

--Shorter stroke (compared to a gate valve)

--Available in tee,WYE, and angle patterns, each offering unique capabilities

--Easy to machine or resurface the seats

--With disc not attached to the stem, valve can be used as a stop-check valve

 

Technical Drawing


Dimension Check

Witnessing Tests


Nameplate & Packing

FAQ

1.Can the ordersalways be delivered on time?

Our purchasingteam follows up very closely with each order tomake sure on-time delivery for most of orders. In 2018,more than 90% orders were delivered on time, and we are dedicated to doing better.

 

2.What’s the normal delivery lead time?

For normal material, usually the delivery time is about 35~40 days, and for forged material, the delivery canevenbe shortened to 20~25 days. We believe the short lead time can make our offer more competitive and help you secure more orders.

 

Do you have different price levels for us?

With our numerous suppliers, different price levels are available with us, so we are able to help you win more customer from different markets requesting for high, medium and low prices.


About Dervos

Xiamen Dervos Valves Industry Co.,Ltd (stock code 861601), founded in June 2008, is a one-stop industrial valves supplier integrated of R&D, manufacture, resource integration, and trade service. For 12 years, Dervos has been committed to finding solutions for industrial needs and providing professional service for both general and specialized valves.


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Butterfly Valve
14" 150LB Concentric Butterfly Valve WCB Wafer API609 Gear

14" 150LB butterfly valve is made according to API609 standard. The valve body is made of WCB+EPOXY COATING. It has the structural characteristics of center line. Its connection mode is wafer. And it has gear operation mode.

Forged Steel Gate Valve
1”150LB Forged Steel Gate Valve A105N API602 ASME B16.34 RF

1”150LB Forged Steel Gate Valve is made according to API602, ASME B16.34 standard. The valve body is made of ASTM A105N. It has the structural characteristics of Bolted Bonnet, Solid Wedge. Its connection mode is RF. And it has Handwheel operation mode.

Plug Valve
1 Inch Class600 Inverted Pressure Balance Lubricated Plug Valve Forged Steel,Full Bore

Quick Detail Type Plug Valve Size 1'' DesignPressure 600LB Construction Lubricated Type, Inverted Type, Pressure Balanced Type, Connection Type FNPT Operation Lever Operation Design Code API6D End Connection ASMEB1.20.1 Pressure & Temp ASME B16.34 Test & Inspection  API 598 Fire Safe API 6FA Body Material A105 Temperature Range ≤80℃ Application Water, Oil, Gas Features --Reliable sealing performance and small torque; --Full bore --Low emission packing; --Fire safe design; --Optional locking device   Technical Drawing Dimension Check Witnessing Tests Packing Why choose Dervos as your partner?   One Stop Service Here in Dervos, we can provide you with one stop service by our complete product list, it means, you don’t need to search for various suppliers for different types of valves, and it will surely save your time and energy. All you need to do is choose Dervos and we will provide complete solutions to you.   On Time Delivery Dervos keeps a high percentage of on time delivery. Why could we achieve that? Our purchasing team follows the order very closely. Plus, our QC and sales person will also do monitoring job on each order.   Strict Quality Control All the members in the QC team are very experienced and professional. For each order, they will check the raw material, manufacturing process, do the pressure testing on shell and seal, and check the valve dimension per assembly drawing. Lastly, they will inspect the painting and packaging.  

Wafer Check Valve
16" CL150 Dual Plate Wafer Check Valve CF8M API594

16" CL150 check valve is made according to API594 standard. The valve body is made of A351 CF8M. It has the structural characteristics of dual plate. Its connection mode is wafer.

Cast Iron Concentric Butterfly Valve
Cast Iron Wafer Type Concentric Butterfly Valve PN10 DN200

The concentric lever operated butterfly valve is made of cast iron GG25, SS420 stem, and EPDM seat. The DN200 wafer butterfly valve is applicable for water. Quick Detail   Type Butterfly Valve Nominal Size DN200 Nominal Pressure PN10 Structure Concentric Type, EPDM Soft Seated Connection Type Wafer Type Operation Lever Operated Design Code EN 593 Face to Face EN 558 End Connection EN 1092 Test & Inspection EN 12266 Body Material Cast Iron GG25 Temperature Range -15℃~+150℃ Application Water, Oil, Gas Available Modifications for Butterfly Valves -Valve Nominal Pressure -Valve Nominal Size -Concentric Type and Eccentric Type -Soft Seat, Multi-Layer Metal Seat, Fully Metal Seat -Body & Trim Material -End Connection (Double Flanged,Wafer, Lug) -Available Operation (Bare Stem, Electric Actuator, Pneumatic Actuator, Lever or Wrench) -Customised Coating -Customised Packaging Product Application Oil & Gas Industry Dervos valves are fully involved in refining, oil and gas industries to handle very tough working environments. Petrochemical Industry We could also provide all kinds of valves in various materials, like stainless steel, Monel, titanium, and hastelloy to meet requirements of chemical industry. Power Station Industry Dervos could provide valves suitable for power station use with high pressure and temperature requirements.

Wafer Check Valve
DN150 PN63 Dual Plate Wafer Type Check Valve WCB API594

DN150 PN63 check valve is made according to API 594 standard. The valve body is made of A216 WCB+STL. It has the structural characteristics of dual plate and wafer type. Its connection mode is wafer (suitable for EN1092-1 D).

Globe Valve
2" 150LB Cast Steel Globe Valve RF WCB BS1873 Handwheel

2" 150LB globe valve is made according to BS1873 standard. The valve body is made of A216 WCB. It has the structural characteristics of bolt cover, rising stem, OS&Y and body valve seat. Its connection mode is RF. And it has hand wheel operation mode.

DN100 WCB Ball Valve
DIN Ball Valve DN100 PN16 WCB Floating Ball Heating Jacket

DIN Ball Valve Full Pore RF Floaing Ball Fire Proof anti-static Lever WCB Body A105+ENP Ball 17-4PH Stem F304+Ni55 Seat X750 Spring Welding Flange Heating Jacket DN100 PN16 Quick Detail Type Ball Valve Size DN100 Design Pressure PN16 Construction Floating ball valve ConnectionType Raised Face Flange OperationType Lever Body Material WCB BallMaterial A105+Ni60 Stem Material 17-4PH SeatMaterial F304+Ni55 Design Code EN12516-1 Face to Face Dimension EN558-1 End Connection EN1092-1 B1 Pressure & Temp EN12266 Medium Water, Oil and Gas Origin China

DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF
DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF

DN125 PN16 gate valve is made according to DIN 3352 standard. The valve body is made of 1.4408. It has the structural characteristics of bolt cover, rising stem, elastic wedge, with SS316 insulation jacket and structural length of 325mm. Its connection mode is RF EN1092-1 B1. And it has hand wheel operation mode.

Ball Valve
DN150 PN25 Cast Steel Floating Ball Valve CF8M API RF

DN150 PN25 floating ball valve is made according to ISO 17292 standard. The valve body is made of A351-CF8M. It has the structural characteristics of 2-piece, side entry, floating ball, full bore, flameproof, antistatic, anti-blowout stem. Its connection mode is RF. And it has lever operation mode.

DN100*65 PN16 Triple Eccentric Jacketed Metal Seated Butterfly Valve, Q235B, EN593, Turbine
DN100*65 PN16 Triple Eccentric Jacketed Metal Seated Butterfly Valve, Q235B, EN593, Turbine

DN100*65 PN16 triple eccentric jacketed metal seated butterfly valve is made according to EN 593 standard. The valve body is made of Q235B. It has the structural characteristics of insulation jacket, triple eccentric, two-way 1:1 pressure test. Its connection mode is EN1092-1 B1. And it has turbine operation mode.

Strainer
DN250 PN40 DIN Y Type Strainer RF 1.0619 EN13709

DN250 PN40 Y-type strainer is made according to EN13709 standard. The valve body is made of EN 10213 1.0619. It has the structural characteristics of Y-type. It connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact