English

English

Get a Quote
Products

Hot Products

Company News

What are the differences between globe valves and gate valves?
What are the differences between globe valves and gate valves?
2025-12-12

In industrial piping systems, globe valves and gate valves are two of the most commonly used shutdown valves. Although both are designed for starting and stopping fluid flow, they differ significantly in structural design, operating principles, application scenarios, and overall performance. Understanding these differences helps engineers make informed selections that ensure system efficiency, reliability, and cost-effectiveness.   I. Key Differences in Structure and Operating Principles   1. Different opening and closing mechanisms Globe Valve: The disc moves up and down along a path perpendicular to the flow direction. Shutoff is achieved when the disc and seat sealing surfaces come into full contact. Gate Valve: The gate moves vertically in a manner similar to a “gate” that is either fully open or fully closed, with sealing achieved through surface compression.  This means that globe valves are suitable for precise throttling, while gate valves are mainly used for full open or full shut service.   2. Flow path design differences A globe valve has an S-shaped flow path that forces the medium to change direction, resulting in higher flow resistance. A gate valve features a straight-through flow path with minimal resistance and low pressure drop, making it better suited for long-distance transmission.   II. Differences in Application Scenarios   1. Throttling vs. On/Off Service Globe valves can be used for throttling and flow regulation, making them suitable for applications requiring high sealing performance and precise flow control, such as steam, cooling water, and various process media.   Gate valves are not suitable for throttling, as operating them in a partially open position may cause gate vibration, damage to the sealing surfaces, and fluid-induced impact. Gate valves are ideal for large-diameter pipelines where low flow resistance is required and switching frequency is relatively low, including oil transportation, water supply and drainage, and power plant systems.   2. Size range and installation space Globe valves are generally used in small to medium sizes (more common below DN50). Their body structure is heavier and requires more installation space. Gate valves are suitable for medium to large sizes. Due to their simpler design, they offer a cost advantage in larger dimensions.   III. Sealing Performance and Pressure Ratings   1. Differences in sealing surface design The globe valve features a tapered sealing surface, which achieves tight shutoff through axial compression, making it easier to obtain reliable sealing performance. The gate valve uses either parallel or wedge-type sealing surfaces. Its sealing effectiveness depends largely on the pressure applied by the gate and is more influenced by the system’s medium pressure.   2. Pressure and temperature adaptability Both valve types are suitable for medium- to high-pressure and high-temperature applications....

Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
2025-12-05

Butterfly valves are widely used in industrial piping systems due to their compact structure, lightweight design, and quick operation. They are commonly applied in water treatment, chemical, power, oil, and gas industries. However, when dealing with industrial standards across different countries and regions, selecting a butterfly valve that meets the relevant specifications is crucial. This article provides a detailed analysis of butterfly valve design and selection requirements based on three key standards: API 609, ISO 5752, and GB/T 12238.   1. API 609 — American Petroleum Institute Standard   API 609 is the American Petroleum Institute (API) standard for metal-seated butterfly valves, primarily used in the oil, gas, and chemical industries. The standard defines valve structure, materials, dimensions, and pressure ratings to ensure reliable performance under high temperature, high pressure, and corrosive media conditions.   Key points include: ● Pressure Ratings: Covers Class 150 to 1500, accommodating various service conditions. ● Body and Disc Design: Metal-to-metal sealing requires precise alignment between disc and seat to prevent leakage under high temperature or high pressure. ● Testing and Inspection: Includes shell tests, seat leakage tests, and operational performance checks to ensure valve safety and reliability.   For high-temperature steam or high-pressure oil and gas pipelines, selecting a butterfly valve compliant with API 609 can significantly reduce leakage risk and extend equipment lifespan.   2. ISO 5752 — International Standard Organization Standard   ISO 5752 is the International Organization for Standardization (ISO) standard that specifies end dimensions and flange connection sizes for valves. It defines the face-to-face dimensions, flange sizes, and connection methods for butterfly valves, providing a consistent interface specification for industrial users worldwide.   Key points include: ● Face-to-Face Dimensions: Specifies valve lengths for different nominal diameters to ensure compatibility with piping systems. ● Flange Dimensions: Ensures valves match international standard pipe fittings, such as ANSI or DIN flanges. ● Interchangeability: Butterfly valves designed according to ISO 5752 can be replaced or serviced globally without redesigning the pipeline interface.   ISO 5752 is particularly suitable for multinational engineering projects, ensuring the universality of butterfly valves across different plants and systems.   3. JB/T8527 — Chinese National Standard   JB/T8527 is the Chinese national standard specifying the dimensions, structure, and testing requirements for metal hard-seal butterfly valves. It is widely applied in domestic industrial projects such as water conservancy, power, and petrochemical industries, serving as an important reference for procurement and acceptance.   Key ...

How to Prevent Check Valve Leakage and Ensure a Proper Seal
How to Prevent Check Valve Leakage and Ensure a Proper Seal
2025-11-27

Check valves are often considered the most “quiet” yet essential components in a piping system. Their primary function is to prevent backflow and safeguard pumps, compressors, and the overall stability of the system. However, in real-world applications, poor sealing—commonly referred to as “leakage”—is one of the most frequent and frustrating issues encountered in check valve operation.   When a check valve fails to seal properly, it can reduce system efficiency, trigger pressure fluctuations, cause water hammer, and even damage critical equipment. This article breaks down the technical causes behind check valve leakage and offers practical diagnostic and corrective measures to help you quickly identify and resolve sealing problems, even under challenging operating.   1. Why Does a Check Valve Fail to Close Properly? Common Causes Explained   1. Presence of Particles or Solid Impurities in the Medium Solid particles can become trapped between the disc and the seat, preventing full contact and causing slight or even noticeable leakage.   Typical signs include: ● Significant leakage at small opening positions ● Leakage decreases after cleaning   2. Disc Wear or Seat Damage Frequent cycling, corrosive media, or high-velocity flow can wear the sealing surfaces, resulting in scratches, pits, or deformation. This issue is especially common in high-temperature steam systems.   3. Incorrect Installation Direction or Insufficient Tilt Angle Although it may sound like a basic mistake, incorrect installation still occurs on many job sites. Since check valves rely heavily on gravity and flow direction, improper installation prevents the disc from returning to its closed position smoothly.   4. Flow Velocity Too Low to Create Adequate Differential Pressure A check valve opens through fluid flow. When the flow rate is too low, the disc may flutter or fail to close completely, leading to leakage.   Common scenarios include: ● Insufficient straight-pipe length ● Frequent pump start/stop ● Poorly designed low-flow systems   5. Disc Sticking or Hinge Mechanism Not Operating Smoothly In swing check valves, rust, corrosion, or lack of lubrication at the hinge pin or disc connection may cause sticking, preventing full closure.   6. Thermal Deformation of Sealing Surfaces Due to Temperature Fluctuations In high-temperature conditions such as steam service, thermal expansion and contraction can slightly deform sealing surfaces, resulting in an imperfect seal.   2. How to Quickly Determine If a Check Valve Is Not Closing Properly?   1. Abnormal Pressure Gauge Readings If the inlet pressure remains stable while the outlet pressure gradually rises, backflow caused by check-valve leakage is the most likely reason.   2. Pipe Vibration or Light Knocking Sounds This indicates that the disc is oscillating at high frequency, often due to insufficient flow velocity or a loose dis...

Globe Valve
加载中...

DN15 PN160 T Pattern Globe Valve SW Alloy Steel

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    F5
  • Method of Operation:

    handwheel
Inquiry now
Product Detail

Quick Detail

Type

Globe Valve

Size

DN15

DesignPressure

PN160

Construction

Tee Pattern

Connection

Socket Welded

Design & Manufacture

BS5352

Socket Weld

ANSI B16.11

Test & Inspection 

EN12266

Body Material

A182 F5+STL

Trim Material

A276 410; STL

Media

WOG

 

Description

--Tee Pattern is the most common type of globe valve with a z shaped diaphragm.

--The seat is oriented horizontally allowing the stem and disk to travel perpendicular to the horizontal line. This alsocontribute to low flow coefficient and higher pressure drop.

 

Features

--Good shutoff capability

--Moderate to good throttling capability

--Shorter stroke (compared to a gate valve)

--Available in tee,WYE, and angle patterns, each offering unique capabilities

--Easy to machine or resurface the seats

--With disc not attached to the stem, valve can be used as a stop-check valve

 

Technical Drawing


Dimension Check

Witnessing Tests


Nameplate & Packing

FAQ

1.Can the ordersalways be delivered on time?

Our purchasingteam follows up very closely with each order tomake sure on-time delivery for most of orders. In 2018,more than 90% orders were delivered on time, and we are dedicated to doing better.

 

2.What’s the normal delivery lead time?

For normal material, usually the delivery time is about 35~40 days, and for forged material, the delivery canevenbe shortened to 20~25 days. We believe the short lead time can make our offer more competitive and help you secure more orders.

 

Do you have different price levels for us?

With our numerous suppliers, different price levels are available with us, so we are able to help you win more customer from different markets requesting for high, medium and low prices.


About Dervos

Xiamen Dervos Valves Industry Co.,Ltd (stock code 861601), founded in June 2008, is a one-stop industrial valves supplier integrated of R&D, manufacture, resource integration, and trade service. For 12 years, Dervos has been committed to finding solutions for industrial needs and providing professional service for both general and specialized valves.


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Strainer
DN32 PN16 Cast Steel Y Type Strainer BC RF WCB

DN32 PN16 Y type strainer is made according to EN12516-1 standard. The valve body is made of WCB. It has the structural characteristics of pressure Y type. Its connection mode is RF.

Body WCB, 3 150LB Cast Steel Globe Valve, RTJ Connection
Body WCB, 3" 150LB Cast Steel Globe Valve, RTJ Connection, BS1873

3" 150LB cast steel globe valve is made according to BS1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of bright pole bracket, body cover bolted connection. Its connection mode is RTJ. And it has hand wheel operation mode.

Double Eccentric Butterfly Valve
Double Offset Cast Iron Butterfly Valve EN593 PN10 DN500

The cast iron butterfly valve belongs to double offset type. also is soft seal butterfly valve,It owns a compact body, low torque value, and perfect sealing function, suited for water application with normal temperature range.  Quick Detail Type Butterfly Valve Nominal Size DN500 Nominal Pressure PN10 Structure Double Offset, Soft Seated Connection Type Flange Type Operation Gear Operated Design Code EN 593 Face to Face EN 558 End Connection EN 1092 Test & Inspection EN 12266 Body Material Cast Iron GGG50 Temperature Range -15℃~+150℃ Application Water, Oil, Gas Dimension Checking & Pressure Testing Tag & Packing

Dual Plate Wafer Type Check Valve
4" 300LB Dual Plate Wafer Type Check Valve API 594

4” 300LB Dual Plate Wafer Type Check Valve is made according to API 594 standard. The valve body is made of A352 LCB+STL. It has the structural characteristics of Dual Plate Wafer Type.

Check Valve
DN100 PN16 Lift Check Valve WCB EN12516-1 EN1092-1 B

DN100 PN16 check valve is made according to EN12516-1 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of lifting type with spring. Its connection mode is EN1092-1 B.

4 125LB Y Type Strainer A395 1.4408 FF ASME B16.34
4" 125LB Y Type Strainer A395 1.4408 FF ASME B16.34

4” 125LB Y Type Strainer is made according to ASME B16.34 standard. The valve body is made of Ductile Iron A395. It has the structural characteristics of Y-Type, Body-Bonnet Bolted Connection. Its connection mode is FF. 

Swing Check Valve
3" 150LB Swing Check Valve Body WCB RF API6D

3" 150LB Swing Check Valve is made according to API 6D standard. The valve body is made of A216 WCB. It has the structural characteristics of Bolted Bonnet, Swing Type. Its connection mode is RF. 

Ball Valve
10" 2500LB Trunnion Mounted Ball Valve RTJ API6D F316

10" 2500LB ball valve is made according to API6D standard. The valve body is made of ASTM A182 F316. It has the structural characteristics of full bore. Its connection mode is RTJ. And it has electric actuator operation mode.

Cast Steel Gate Valve
6" 300LB Cast Steel Gate Valve BW API600 Handwheel LCB

6" 300LB gate valve is made according to API 600 standard. The valve body is made of A352 LCB. It has the structural characteristics of bolt cover, rising stem, OS&Y. Its connection mode is BW (SCH40). And it has handwheel operation mode.

SS High Performance Butterfly Valve
Double Offset High Performance Butterfly Valve CF8M 3 Inch

The double offset high performance butterfly valve, with lever operation and lug body, is designed per API 609. The CF8M body and PTFE seat butterfly valve is more durable in serving the application. Quick Detail Type Butterfly Valve Size 3'' Design Pressure 150LB Construction Double Eccnetric, Soft Seat Connection Type Lug Operation Wrench Operated Design Code API 609 Face to Face ASMEB16.10 End Connection ASMEB16.5 Test & Inspection API 598 Body Material Stainless Steel CF8M Temperature Range -29℃~+150℃ Application Water, Oil, Gas Dimension Class 150 DN mm 40 50 65 80 100 125 150 200 250 300 350 400 NPS in 1 1/2 2 2 1/2 3 4 5 6 8 10 12 14 16 L mm       127 127 127 127 152 203.2 203.2 203.2 203.2 in       5 5 5 5 6 8 8 8 8 L1 mm 38.1 46 50.8 48 54 63.5 57 63.5 71.5 81 92 101.5 in 1.5 1.81 2 1.88 2.13 2.5 2.25 2.5 2.81 3.19 3.62 4 H mm 185 190 220 229 239 252 284 307 337 392 435 481 in 7328 7.48 8.7 9 9.4 9.9 11.2 12 13.3 15.4 17.1 19 D(W) mm 160 160 160 160 160 160 160 200 200 250 250 300 in 6.3 6.3 6.3 6.3 6.3 6.3 6.3 7.9 7.9 9.8 9.8 11.8 Weight  (Kg) mm       12.5 13.5 17 38 72 105 148 182 230 in 8 9 10 10 11 14.5 34.2 66 98 134 168 200 Related Knowledge What is a high performance butterfly valve? A high performance butterfly valve is often designed with double offset and PTFE seat, to handle everything from general applications to viscous and corrosive liquids; corrosive gases and steam. Compared to concentric resilient seat butterfly valve, the disc of the high performance butterfly valve is arranged and positioned off the center of the pipe bore, which could reduce wear and tear to the valve during operation and increase sealing performance. In conlusion, high performance butterfly valve is applicable for higher pressure and temperature applications. Meanwhile, it has longer cycle life and better sealing ability.

Ball Valve
DN40 PN40 Floating Ball Valve F316L RF Lever DIN

DN40 PN40 floating ball valve is made according to EN 13709 standard. The valve body is made of A182 F316L. It has the structural characteristics of floating ball. Its connection mode is RF. And it has lever operation mode.

Check Valve
3" 600LB Swing Check Valve RF WCB API6D Cast Steel

3" 600LB check valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of bolt cover, swing type and full bore. Its connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact