English

English

Get a Quote
Industry Knowledge
  • Three Common Causes of Valve Leakage and Emergency Remedies
    Three Common Causes of Valve Leakage and Emergency Remedies May 28, 2025
    In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...
    View More
  • Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
    Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems May 20, 2025
    In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...
    View More
  • Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
    Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers Apr 30, 2025
    Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...
    View More
  • What Causes Ball Valve Failure? 5 Common Issues and How to Prevent Them
    What Causes Ball Valve Failure? 5 Common Issues and How to Prevent Them Apr 11, 2025
    Ball valves are widely used industrial flow control components, commonly found in applications such as water treatment, oil and gas, chemical processing, HVAC systems, and the food and pharmaceutical industries. Thanks to their compact structure, quick shut-off capability, and excellent sealing performance, ball valves play a critical role in various fluid systems. However, even the most reliable ball valve can encounter failures after prolonged operation. When a ball valve fails, it can compromise the stability of the entire system and, in severe cases, lead to media leakage or even safety incidents. Therefore, understanding the root causes of ball valve failure and implementing effective preventive measures is essential for engineers and maintenance personnel.   1. Seal Failure Cause: Seal failure in ball valves is often caused by seat wear, debris accumulation, or aging of sealing materials. This issue is especially common in high-temperature, high-pressure, or corrosive media environments. Prevention Tips: To extend the service life of the seal, choose ball valves with PTFE or metal seats that are compatible with the process media. Regularly clean the seat area and establish a replacement schedule based on the operating conditions.   2. Corrosion or Scratches on the Ball Surface Cause: When a ball valve is used with media containing acids, alkalis, high salt content, or abrasive particles, improper material selection can lead to corrosion, pitting, or surface scratches. These issues reduce sealing performance and affect smooth operation. Prevention Tips: Select stainless steel ball valves (such as 304 or 316 grades) or special alloy ball valves based on the specific media characteristics. Additionally, install a strainer or filter to minimize solid particle intrusion and protect the valve internals.   3. Stem Breakage or Seizure Cause: The valve stem, which transmits torque to the ball, may experience metal fatigue and fracture under frequent operation or excessive torque. Seizure can also occur due to bearing wear or lack of lubrication. In some low-quality ball valves, insufficient structural design margin further increases the risk of stem failure. Prevention Tips: Use ball valves with blow-out proof stem designs to enhance operational safety. Ensure that operating torque stays within the valve’s rated limits, and apply lubricant regularly to reduce friction and wear, extending service life.   4. Improper Installation or Operation Cause: Human errors such as incorrect installation direction, loose flange connections, or frequent forceful operation are major contributors to early ball valve failure. In the case of electric or pneumatic ball valves, signal control errors can also lead to misoperation or valve jamming. Prevention Tips: Always follow the manufacturer’s installation guidelines, ensure proper alignment and secure flange connections. Install limit switches and torque protection devices to safeguard...
    View More
  • Can Wafer Check Valves Be Installed Vertically? Installation Best Practices and Considerations
    Can Wafer Check Valves Be Installed Vertically? Installation Best Practices and Considerations Mar 28, 2025
    In industrial pipeline systems, the wafer check valve plays a key role in preventing backflow and is widely used in various fluid control systems. It is favored by many engineers and designers for its compact, lightweight, and easy-to-install characteristics. In practical applications, many consider installing the wafer check valve vertically to accommodate different pipeline layouts and space requirements. So, can wafer check valves be installed vertically? If so, how can their performance and safety be ensured? This article will explore the feasibility of vertical installation of wafer check valves and share some installation guidelines and precautions.   1. Working Principle and Application Scope of Wafer Check Valves A wafer check valve is an automatically opening and closing valve primarily used to prevent backflow of fluids. The valve disc is pushed open when the fluid flows in the forward direction, and it closes by gravity or spring action when the fluid stops or reverses. Unlike traditional swing check valves, wafer check valves typically feature a more compact design, allowing them to be directly sandwiched between pipeline flanges, saving installation space. In typical pipeline systems, the most common installation method for wafer check valves is horizontal installation, as this configuration is the most stable and convenient for maintenance. However, in certain special installation environments, such as tight spaces or specific operating conditions, vertical installation can also be a viable option.   2. Can Wafer Check Valves Be Installed Vertically? In theory, vertical installation of a wafer check valve is feasible, but several important factors should be considered:   · Gravity Effect on the Valve Disc The design of the wafer check valve relies on the gravity of the valve disc to close the valve. In horizontal installation, the valve disc naturally falls to ensure a proper seal. However, in a vertical installation, the valve disc may not close naturally due to gravity, especially in upward flow situations. Therefore, it is crucial to ensure that the design of the valve disc and the configuration of the spring are suitable for vertical installation, allowing the valve to close effectively without external interference.   · Fluid Flow Direction The direction of fluid flow in a wafer check valve directly impacts its performance. When installed vertically, the flow direction may change, potentially leading to unstable opening or closing of the valve disc. To ensure that the valve disc closes at the right time, it is recommended to check whether the valve has a reliable anti-backflow design, ensuring it can function properly even in vertical installation.   · Installation Space and Maintenance Accessibility Vertical installation of a wafer check valve may require more space, particularly if there is a need to maintain a certain distance from other equipment in the pipeline system to allow ...
    View More
  • What is the Ball Valve Used For?
    What is the Ball Valve Used For? Mar 06, 2025
    A ball valve is a widely used flow control valve in industrial pipeline systems. With its simple structure, excellent sealing performance, and easy operation, it plays a crucial role across various industries. 1. Basic Functions Ball valves are rotary-type valves that control fluid flow by rotating a spherical closure element 90 degrees. Their primary functions include: (1) Shut-off and On/Off Control Provides quick opening and closing, making it suitable for pipeline systems requiring frequent operation. (2) Flow Regulation Certain specially designed ball valves allow flow adjustment to accommodate different operating conditions. (3) Bi-directional Sealing Ensures reliable sealing in both flow directions, enhancing pipeline system safety. (4) Emergency Shut-off Some ball valves are equipped with actuators for emergency shut-off, improving overall system safety.   2. Key Features Due to their unique structure and material selection, ball valves offer the following advantages: (1) Excellent Sealing Performance Utilizes soft seals (PTFE, rubber) or metal seals to ensure zero leakage. (2) High Pressure and Temperature Resistance Capable of withstanding high pressures (up to Class 2500) and extreme temperatures (some metal-seated ball valves can operate above 500°C). (3) Easy Operation Available with manual handles, gear operators, electric, or pneumatic actuators to meet various automation requirements. (4) Long Service Life Minimal friction during operation, making it suitable for frequent and long-term use.   3. Typical Applications Due to their versatility, ball valves play a critical role across various industries, including: (1) Oil & Gas Industry Used in transmission pipelines, distribution systems, and storage facilities, ball valves provide reliable control over high-pressure and high-temperature media, ensuring leak prevention and system safety. (2) Chemical & Pharmaceutical Industry Commonly employed for handling corrosive media such as acids, alkalis, and solvents. The use of corrosion-resistant materials (e.g., stainless steel, Hastelloy, PTFE lining) extends service life and enhances reliability. (3) Water Treatment & Environmental Protection In wastewater treatment, seawater desalination, and municipal water supply networks, ball valves regulate and isolate flow, ensuring stable and secure fluid transportation. (4) Power & Energy Sector Ball valves are used for precise control of steam, cooling water, and fuel flow in boiler systems, condensate recovery, and gas transmission, improving energy efficiency and operational safety. (5) Marine & Offshore Engineering Applied in offshore oil platforms and shipboard piping systems, ball valves control seawater, fuel, and ballast water while meeting stringent corrosion resistance requirements in harsh marine environments.
    View More
first page 1 2 3 4 5 6 7 8 9 10 last page
[  A total of  29  pages]

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact