English

English

Get a Quote
Products

Hot Products

Company News

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

What are the differences between globe valves and gate valves?
What are the differences between globe valves and gate valves?
2025-12-12

In industrial piping systems, globe valves and gate valves are two of the most commonly used shutdown valves. Although both are designed for starting and stopping fluid flow, they differ significantly in structural design, operating principles, application scenarios, and overall performance. Understanding these differences helps engineers make informed selections that ensure system efficiency, reliability, and cost-effectiveness.   I. Key Differences in Structure and Operating Principles   1. Different opening and closing mechanisms Globe Valve: The disc moves up and down along a path perpendicular to the flow direction. Shutoff is achieved when the disc and seat sealing surfaces come into full contact. Gate Valve: The gate moves vertically in a manner similar to a “gate” that is either fully open or fully closed, with sealing achieved through surface compression.  This means that globe valves are suitable for precise throttling, while gate valves are mainly used for full open or full shut service.   2. Flow path design differences A globe valve has an S-shaped flow path that forces the medium to change direction, resulting in higher flow resistance. A gate valve features a straight-through flow path with minimal resistance and low pressure drop, making it better suited for long-distance transmission.   II. Differences in Application Scenarios   1. Throttling vs. On/Off Service Globe valves can be used for throttling and flow regulation, making them suitable for applications requiring high sealing performance and precise flow control, such as steam, cooling water, and various process media.   Gate valves are not suitable for throttling, as operating them in a partially open position may cause gate vibration, damage to the sealing surfaces, and fluid-induced impact. Gate valves are ideal for large-diameter pipelines where low flow resistance is required and switching frequency is relatively low, including oil transportation, water supply and drainage, and power plant systems.   2. Size range and installation space Globe valves are generally used in small to medium sizes (more common below DN50). Their body structure is heavier and requires more installation space. Gate valves are suitable for medium to large sizes. Due to their simpler design, they offer a cost advantage in larger dimensions.   III. Sealing Performance and Pressure Ratings   1. Differences in sealing surface design The globe valve features a tapered sealing surface, which achieves tight shutoff through axial compression, making it easier to obtain reliable sealing performance. The gate valve uses either parallel or wedge-type sealing surfaces. Its sealing effectiveness depends largely on the pressure applied by the gate and is more influenced by the system’s medium pressure.   2. Pressure and temperature adaptability Both valve types are suitable for medium- to high-pressure and high-temperature applications....

Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
2025-12-05

Butterfly valves are widely used in industrial piping systems due to their compact structure, lightweight design, and quick operation. They are commonly applied in water treatment, chemical, power, oil, and gas industries. However, when dealing with industrial standards across different countries and regions, selecting a butterfly valve that meets the relevant specifications is crucial. This article provides a detailed analysis of butterfly valve design and selection requirements based on three key standards: API 609, ISO 5752, and GB/T 12238.   1. API 609 — American Petroleum Institute Standard   API 609 is the American Petroleum Institute (API) standard for metal-seated butterfly valves, primarily used in the oil, gas, and chemical industries. The standard defines valve structure, materials, dimensions, and pressure ratings to ensure reliable performance under high temperature, high pressure, and corrosive media conditions.   Key points include: ● Pressure Ratings: Covers Class 150 to 1500, accommodating various service conditions. ● Body and Disc Design: Metal-to-metal sealing requires precise alignment between disc and seat to prevent leakage under high temperature or high pressure. ● Testing and Inspection: Includes shell tests, seat leakage tests, and operational performance checks to ensure valve safety and reliability.   For high-temperature steam or high-pressure oil and gas pipelines, selecting a butterfly valve compliant with API 609 can significantly reduce leakage risk and extend equipment lifespan.   2. ISO 5752 — International Standard Organization Standard   ISO 5752 is the International Organization for Standardization (ISO) standard that specifies end dimensions and flange connection sizes for valves. It defines the face-to-face dimensions, flange sizes, and connection methods for butterfly valves, providing a consistent interface specification for industrial users worldwide.   Key points include: ● Face-to-Face Dimensions: Specifies valve lengths for different nominal diameters to ensure compatibility with piping systems. ● Flange Dimensions: Ensures valves match international standard pipe fittings, such as ANSI or DIN flanges. ● Interchangeability: Butterfly valves designed according to ISO 5752 can be replaced or serviced globally without redesigning the pipeline interface.   ISO 5752 is particularly suitable for multinational engineering projects, ensuring the universality of butterfly valves across different plants and systems.   3. JB/T8527 — Chinese National Standard   JB/T8527 is the Chinese national standard specifying the dimensions, structure, and testing requirements for metal hard-seal butterfly valves. It is widely applied in domestic industrial projects such as water conservancy, power, and petrochemical industries, serving as an important reference for procurement and acceptance.   Key ...

6 300LB Axial Flow Check Valve, Wafer Type, Body SS2205
加载中...

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

6" 300LB Axial Flow Check valve is made according to API594 standard. The valve body is made of SS2205. It has the structural characteristics of Silent type. Its connection mode is Wafer Type.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    SS2205
Inquiry now
Product Detail

Product Description

 

Type

Axial Flow Check Valve

Size

6"

Pressure

300LB

Connection

Wafer

Body Material

SS2205

Design Norm

API 594

Face to Face Dimensions

API 594

End Flange Dimensions

ANSI B16.5

Test & Inspection Code

API 598

Temperature

-29 ~ 200°C

Applicable Medium

Water, Oil and Gas

Features

1. Valve disc has no impact action, smooth opening and closing action, almost no "knocking" sound, suitable for occasions with strict noise requirements;

2. The valve disc and seat are precisely matched, and can be equipped with metal seals or soft seals, with reliable sealing and no leakage.

Technical Drawing

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

Dimension Checking

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

Pressure Testing

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

Nameplate & Packing

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

Inspection report

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Nozzle Check Valve
2 Inch 150LB Nozzle Check Valve LCB

The 2inch axial nozzle check valve is the preferred solution for preventing return flow or shocks on critical process equipment. Thank for its LCB body, the valve is capable for working temperature down to -46 degree Celsius.

Axial Flow Check Valve
RTJ Connection, 3" 1500LB Axial Flow Check Valve, API6D, Body A995 4A

3" 1500LB axial flow check valve is made according to API 6D standard. The valve body is made of A995 4A. It has the structural characteristics of axial flow type, and structural length of 473mm. Its connection mode is RTJ.

Axial Flow Check Valve
2”CL150 Axial Flow Check Valve RF API6D

2”CL150 Axial Flow Check Valve is made according to API 6D standard. The valve body is made of ASTM A352 LCB+316SS. It has the structural characteristics of axial flow. Its connection mode is RF.

1/2” 400LB Floating Ball Valve Body B62 C83600 Lever OP.
1/2” 400LB Floating Ball Valve Body B62 C83600 Lever OP.

1/2” 400LB Floating Ball Valve is made according to ASME B16.34 standard. The valve body is made of B62 C83600. It has the structural characteristics of Two-Piece. Its connection mode is Lever OP.. 

Dual Disc Lug Check Valve 150 LB
Duplex SS Check Valve Lug Type Dual Plate 8 Inch Class 150

The 8 inch 150 LB dual disc non return check valve, designed per API 594, has dual plate and lug connection. The retainerless dual  plate check valve is made of duplex stainless steel 4A as its body and trim material. Quick Detail Type Check Valve Size 8'' DesignPressure Class 150 Construction Dual Plate Type, Retainerless Connection Lug Type Design & Manufacture API 594 End to End ASME B16.10 Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material Duplex Stainless Steel 4A Trim Material Duplex Stainless Steel Media W.O.G. Design Feature 1.Shor face to face dimension 2.Small in size with light weight 3.Swift close of disc with small water hammer 4.Vertically or horizontally installed 5.Smooth flow passway with small flow resistance 6.Long cycle life and high reliability

Swing Check Valve
Body A105N, API602, NPT Connection, 2'' 800LB Swing Check Valve

2" 800LB swing check valve is made according to API 602 standard. The valve body is made of ASTM A105N. It has the structural characteristics of bolted cover, swing type. Its connection mode is NPT.

Needle Valve
1/2'' 6000PSI Needle Valve, FNPT Connection, Body SS316, ASME B16.34

1/2" 6000PSI needle valve is made according to ASME B16.34 standard. The valve body is made of SS316. It has the structural characteristics of pass-through type. Its connection mode is FNPT. And it has lever operation mode.

Globe Valve
DN25 PN40 Forged Steel Globe Valve EN1092-1 B1 A105 API602

DN25 PN40 globe valve is made according to API602 standard. The valve body is made of A105N+STL. It has the structural characteristics of plug-type valve disc, overlay welding with back seat STL, body overlay welding valve seat. Its connection mode is EN1092-1 B1. And it has handwheel operation mode.

DN15 Forged Steel Globe Valve
Body A105, DN15 PN63 Forged Steel Globe Valve, FNPT Connection, API602

DN15 PN63 Forged Steel Globe valve is made according to API 602 standard. The valve body is made of A105N + STL. It has the structural characteristics of throttle valve disc, plug cover. Its connection mode is FNPT. And it has hand wheel operation mode.

Top Entry Ball Valve ASTM A105 8'' 900LB
Top Entry Ball Valve ASTM A105 8'' 900LB

The 8 inch top entry ball valve with features of cavity pressure self-relief and emergency sealant injection is designed as per API 6D. It’s capable to handle working pressure up to 900LB.

Forged Steel Floating Ball Valve
DN25 PN16 Forged Steel Floating Ball Valve Body ASTM ISO 17292

DN25 PN16 Forged Steel Floating Ball Valve is made according to ISO17292 standard. The valve body is made of ASTM-A105. It has the structural characteristics of Split Body, Floating Ball, Full Bore, Fire-safe, Anti-static, Blow-out Proof Stem. Its connection mode is RF . And it has hand wheel operation mode.

Gate Valve
API602 1" 800LB Forged Steel Gate Valve A105N SW

1" 800LB gate valve is made according to API 602 standard. The valve body is made of ASTM A105N. It has the structural characteristics of rising-stem. Its connection mode is SW. And it has the operation mode of installing electrical equipment with a light rod.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact