English

English

Get a Quote
Products

Hot Products

Company News

Check Valve Maintenance: When to Replace and How to Fix Common Issues
Check Valve Maintenance: When to Replace and How to Fix Common Issues
2025-11-06

A check valve is a critical device that prevents backflow, widely used in water treatment, oil & gas pipelines, chemical processing, and steam systems.   After long-term operation, check valves may experience issues such as leakage, vibration noise, or sticking. If not addressed promptly, these problems can reduce system efficiency and even cause equipment damage or safety hazards.   So, how can you tell if a check valve needs replacement? Which faults can be repaired, and which require a full replacement? This article provides a systematic guide.   1. Basic Operating Principle of Check Valves   The primary function of a check valve is to automatically prevent backflow. When fluid flows in the intended direction, the valve disc is pushed open by pressure; when flow reverses, the disc closes automatically, using either its own weight or a spring, preventing backflow.   Common types include: Lift Check Valve Swing Check Valve Dual Plate Wafer Check Valve Ball Check Valve    Although their designs vary, the key criteria for determining whether a check valve needs replacement remain the same: sealing performance, operational smoothness, and structural integrity.   2. How to Determine if a Check Valve Needs Replacement   Visible Leakage (Internal or External) If fluid continues to flow backward when the valve is closed, it indicates significant wear or deformation of the sealing surfaces, preventing an effective seal. If the leakage exceeds system tolerances and cannot be corrected by cleaning or resurfacing, the valve or its sealing components should be replaced.   Sticking or Inflexible Valve Disc After long-term operation, the valve stem, guides, or disc may become stuck due to scaling, corrosion, or debris. If cleaning, descaling, or lubrication fails to restore smooth operation, replacement is recommended.   Excessive Noise or Vibration Frequent opening and closing or rapid disc rebound can cause vibration or knocking sounds. This is usually due to spring failure, loose valve components, or worn guides. Persistent or frequent noise should trigger inspection of the valve’s structural integrity and consideration for replacement.   Corroded or Cracked Valve Body or Cover Exposure to acidic, alkaline, or high-temperature fluids can corrode or crack the valve body, compromising structural strength and posing safety risks. Such damage cannot be repaired and requires full valve replacement.   Frequent Backflow or Abnormal System Pressure Fluctuations Poor sealing or delayed valve response can cause system pressure variations, including water hammer. If repeated adjustments do not resolve the issue, it indicates aging of the internal spring or disc mechanism, necessitating timely replacement.   3. Common Fault Diagnosis and Solutions   Fault: Valve fails to close completely, causing backflow Cause: Worn sealing surfaces, deformed disc, or trapped debris Solution: Remove ...

What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
2025-10-31

If you’ve ever hesitated between choosing a flanged or threaded globe valve, you’re not alone. Globe valves are common shut-off valves widely used in industries such as oil and gas, chemical processing, power generation, shipbuilding, and water treatment. While both connection types can control fluid flow, they differ significantly in terms of installation method, sealing performance, and suitable applications. This article will provide a systematic comparison of flanged and threaded globe valves from the perspectives of structure, performance, and application.   I. Fundamental Difference in Connection Methods   1.Flanged Globe Valve A flanged globe valve connects to the pipeline through flanges, with bolts tightening the flange faces together to ensure a secure seal.This connection type offers excellent strength and reliability, making it ideal for medium to high-pressure, large-diameter, and frequently operated systems.In industrial applications, typical sizes range from DN50 to DN300, and flange dimensions generally follow international standards such as ANSI, DIN, or JIS.   2. Threaded Globe ValveA threaded globe valve typically uses either internal (NPT/BSP) or external threads to connect to the pipeline, relying on the threads themselves for sealing.This compact and lightweight structure allows for easy installation and is mainly used in small-diameter (usually ≤ DN50) and low-pressure systems, including residential pipelines.Because it does not require welding or flange gaskets, a threaded valve is more cost-effective in both installation and maintenance.     II. Comparison of Sealing Performance and Maintenance   Flanged Globe ValveFlanged globe valves typically use metal or flexible graphite gaskets for sealing, offering excellent resistance to high temperature, high pressure, and corrosion.During long-term operation, maintenance or valve replacement is straightforward—simply loosen the flange bolts to disassemble the valve.   Threaded Globe ValveThe sealing of a threaded globe valve mainly depends on the thread engagement and sealing materials such as PTFE tape or sealing paste.However, repeated disassembly can damage the threads and increase the risk of leakage.For this reason, threaded globe valves are better suited for fixed installations, clean fluids, and low-pressure systems.     III. Structural Dimensions and Installation Requirements   Flanged Globe ValveFlanged globe valves are larger in size and require more installation space, but they provide superior vibration resistance and pressure tolerance.They are commonly used in industrial piping networks or pump station systems where sufficient structural support is available.   Threaded Globe ValveThreaded globe valves feature a compact design, making them ideal for confined spaces or lightweight piping systems such as laboratories, compressor inlets and outlets, and domestic water supply lines.However, thr...

Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
2025-10-24

The global industrial valve market is undergoing a quiet yet significant transformation. Growth is no longer driven mainly by new construction projects — instead, it’s increasingly fueled by the replacement and modernization of aging equipment and infrastructure. From petrochemical plants to municipal water systems and natural gas pipelines, valve upgrades have become a key priority across industries.   Aging Equipment Drives Rising Valve Replacement Demand   In many industrial facilities, valves—though seemingly durable—gradually suffer from seal wear, sluggish operation, and leakage after years of service. For plants operating over a decade, valve degradation has become a major factor affecting safety and efficiency.   With stronger focus on maintenance, process safety, and energy efficiency, end users in oil & gas, power, and water treatment sectors are accelerating valve replacement and upgrade projects. This trend aligns with a global shift toward predictive maintenance and sustainable operations, increasing demand for ball valves, gate valves, and control valves.   Market research from Mordor Intelligence and others shows a shorter valve replacement cycle due to rising maintenance costs and downtime risks. Stricter environmental and safety standards are also pushing faster modernization worldwide. In the U.S., for example, the water sector—with pipelines averaging over 40 years old—is investing in large-scale valve renewal programs to reduce leakage and unplanned shutdowns. Similar initiatives are emerging across Europe and Asia.   Infrastructure Investment Fuels Market Expansion   Beyond replacements, ongoing infrastructure investment continues to drive valve demand globally. Asia’s rapid industrial growth and the Middle East’s refining and petrochemical expansion have led to increased valve procurement.   According to GMI Insights, the global industrial valve market reached USD 75.9 billion in 2024 and is projected to hit USD 142.6 billion by 2034 (CAGR: 6.6%). Precedence Research forecasts even higher potential—up to 12.5% CAGR.   This growth is backed by large-scale upgrades in urban water networks, wastewater treatment plants, natural gas pipelines, and energy transition projects such as hydrogen and carbon capture systems, all requiring next-generation high-performance valves.   Valve Replacement Becomes a Smart Technology Upgrade   Modern valves are evolving beyond mechanical parts. With smart manufacturing and the Industrial Internet of Things (IIoT), today’s valves feature sensors, smart actuators, and remote monitoring. Engineers can now track performance in real time and conduct predictive maintenance, reducing unexpected downtime.   Advanced materials like corrosion-resistant alloys, cryogenic steels, and special polymers are extending service life and reliability—especially in harsh environments. For indu...

Nozzle Check Valve
加载中...

2 Inch 150LB Nozzle Check Valve LCB

The 2inch axial nozzle check valve is the preferred solution for preventing return flow or shocks on critical process equipment. Thank for its LCB body, the valve is capable for working temperature down to -46 degree Celsius.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    LBC
  • Method of Operation:

    Non
Inquiry now
Product Detail

Quick Detail

Type

Check Valve

Size

2 Inch

DesignPressure

150LB

Construction

Axial Flow Type

Connection

RF

Design & Manufacture

API 6D

End to End

API 6D

End Flange Dimensions

ANSI B16.5

Test & Inspection 

API 6D

Body Material

LCB

Trim Material

SS316

Temp Range

-46℃~350℃

Media

W.O.G.

 

Our nozzle check valve, characterized by an optimized flow profile and unique dual-spring design, solves common check valve operational issues while improving on the dynamic response and pressure loss of existing nozzle check valve designs.

 

Features

-Low pressure loss

-Unique dual-spring design for fast, dynamic, non-slam response

-Reliable, maintenance-free operation

 

Technical Drawing


Witness Tests



Nameplate&Packing


Why choose Dervos as your partner?


One Stop Service

Here in Dervos, we can provide you with one stop service by our complete product list, it means, you don’t need to search for various suppliers for different types of valves, and it will surely save your time and energy. All you need to do is choose Dervos and we will provide complete solutions to you.

 

On Time Delivery

Dervos keeps a high percentage of on time delivery. Why could we achieve that? Our purchasing team follows the order very closely. Plus, our QC and sales person will also do monitoring job on each order.

 

Strict Quality Control

All the members in the QC team are very experienced and professional. For each order, they will check the raw material, manufacturing process, do the pressure testing on shell and seal, and check the valve dimension per assembly drawing. Lastly, they will inspect the painting and packaging.



Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Axial Flow Check Valve
RTJ Connection, 3" 1500LB Axial Flow Check Valve, API6D, Body A995 4A

3" 1500LB axial flow check valve is made according to API 6D standard. The valve body is made of A995 4A. It has the structural characteristics of axial flow type, and structural length of 473mm. Its connection mode is RTJ.

6 300LB Axial Flow Check Valve, Wafer Type, Body SS2205
6" 300LB Axial Flow Check Valve, Wafer Type, Body SS2205, API594

6" 300LB Axial Flow Check valve is made according to API594 standard. The valve body is made of SS2205. It has the structural characteristics of Silent type. Its connection mode is Wafer Type.

Axial Flow Check Valve
2”CL150 Axial Flow Check Valve RF API6D

2”CL150 Axial Flow Check Valve is made according to API 6D standard. The valve body is made of ASTM A352 LCB+316SS. It has the structural characteristics of axial flow. Its connection mode is RF.

Butterfly Valve
48" CL150 Three Eccentric Butterfly Valve CF8M API609 LUG

48" CL150 butterfly valve is made according to API 609 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of triple eccentricity. Its connection mode is lug to ASME B16.47B. And it has smooth rod with flange connection plate operation mode.

ball valve and check valve replacement
DERVOS Valves Applied in MOL Refinery Upgrade Project in Hungarian

The refinery of MOL, located in Hungary, requires regular ball valve and check valve replacements to maintain optimal performance. As a trusted check and ball valve supplier of MOL, DERVOS continues to provide ball valves for their operations. In this project, DERVOS supplied a batch of high-performance ball valves and check valves for fluid control in oil and gas applications. They required various types and specifications of ball and check to meet the operational and sealing requirements of different pipeline systems.

Plug Valve
Self Lubricated Plug Valve Sleeve Type 1 inch 150LB CF3

The 1 inch self-lubricated or non-lubricated plug valve is made of A315 CF3 as per API 599. It enjoys outstanding sealing and anti-corrosion performance, owing to its PTFE seat. Besides that, the sleeve type valve is only suitable for the normal temperature up to 120 degree.   Quick Detail Type Plug Valve Size 1'' Design Pressure 150LB Construction Self-Lubricated Type, Sleeved Type, Soft Seat Connection Flange Operation Lever Operation Design Code API 599 Face to Face ASME B16.10 End Connection ASME B16.5 Test & Inspection API 598 Body Material A351 CF3 Temperature Range -29℃~+120℃ Application Water, Oil, Gas   Dimension Checking    Hydro-static Testing    

Cast Steel Gate Valve Class 600
16 Inch Flanged Gate Valve WCB Rising Stem API 600

The 16 inch cast steel gate valve with gearbox and 600LB RF flange is designed as per API 600. The bolted bonnet gate valve features in rising stem, resilient wedge and metal seat. Quick Detail Type Gate Valve Size 16" Pressure Class600 Construction Bolted Bonnet, Rising Stem, OS&Y, Flexible Wedge, Metal Seat Connection RF Flange Operation Gearbox Design Code API 600 Face to Face ASME B16.10 Flange End ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB TrimMaterial Trim 5 Temperature Range -29℃~+425℃ Medium Water, Oil and Gas Origin China Dimension & Material Class 600 NPS in 2 2 1/2 3 4 6 8 10 12 14 16 18 20 24 DN mm 50 65 80 100 150 200 250 300 350 400 450 500 600 L-L1 (RF-BW) in 11.5 13 14 17 22 26 31 33 35 39 43 47 55 mm 292 330 356 432 559 660 787 838 889 991 1092 1194 1397 L2 (RTJ) in 11.625 13.125 14.125 17.125 22.125 26.125 31.125 33.125 35.125 39.125 43.125 47.25 55.375 mm 295 333 359 435 562 664 791 841 892 994 1095 1200 1407 H (OPEN) in 18.625 21.75 23.375 28 1/16 38 3/16 44 3/16 52.375 59 13/16 68.125 72.25 90.125 98 13/16 119 mm 474 553 593 713 970 1122 1330 1519 1730 1835 2290 2510 3022 W in 9.875 9.875 11 13/16 13.75 19 11/16 22 1/16 28.375 24 24 24 24 30 30 mm 250 250 300 350 500 560 720 610* 610* 610* 610* 760* 760* WT (kg) RF 41 58 88 131 253 413 623 784 1288 1820 2150 2540 4080 BW 35 50 68 104 208 328 496 637 1120 1448 1828 2201 3360 *Manual gear operator is recommended No Part Name Carbon steel to ASTM Alloy steel to ASTM Stainless steel to ASTM WCB LCB WC6 WC9  C5 CF8 CF8M CF3 CF3M 1 Body A216 WCB A350 LCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 2 Seat Ring A105 A350 LF2 A182 F11 A182 F22 A182 F5 A182 F304 A182 F316 A182 F304L A182 F316L 3 Wedge A216 WCB A350 LCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 4 Stem A182 F6 A182 F6 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L 5 Bonnet nut A194 2H A194 4 A194 7 A194 8 6 Bonnet bolt A193 B7 A320 L7 A193 B16 A193 B8 7 Gasket SS Spiral Wound graphite or SS Spiral Wound PTFE 8 Bonnet A216 WCB A352 LCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 9 Backseat bushing A182 F6 A182 F6 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L 10 Stem packing Graphite or PTFE 11 Lantern A182 F6 A182 F6 A182 F304 A182 F304 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L 12 Gland Nut A194 2H A194 8 13 Gland Eyebolt A193 B7 A193 B8 14 PIN Carbon steel or Stainless Steel 15 Gland A182 F6 A182 F304 A182 F316 A182 F304L A182 F316L 16 Gland Flange A216 WCB A351 CF8 17 Stem Nut A439 D2 or B148-952A 18 Nipple Carbon steel or Stainless Steel 19 Retaining Nut Carbon steel 20 Hand Wheel Ductile Iron or carbon steel 21 Name Plate Stainless steel or Aluminum 22 H.W.Lock Nut Carbon steel

Gate Valve
Knife Gate Valve CF8 4 Inch 150LB Lug Type Handwheel

The lug type knife gate valve is designed per MSS-SP-81.Made by stainless steel CF8, the 4 inch gate valve has 150 LB flange connection and handwheel operation.

Lubricated Plug Valve
1" 600LB Lubricated Plug Valve, Body WCB, RF Connection, API6D

1" 600LB plug valve is made according to API 6D standard. The valve body is made of A216 WCB. It has the structural characteristics of inverted pressure balance lubricated and fire safe conform to API 6FA. Its connection mode is RF. And it has lever operation mode.

API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y
API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y

10’’ 300LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 C5 + STL. It has the structural characteristics of rising stem and bolt cover. The gate valve connected by flange has the operation mode of hand wheel.

Gate Valve
1" 800LB Forged Steel Gate Valve BW*NPT F5 API602

1" 800LB gate valve is made according to API 602 standard. The valve body is made of A182-F5. It has the structural characteristics of rigid gate, welded bonnet and extended valve body 100mm. Its connection mode is BW*NPT. And it has hand wheel operation mode.

Ball Valve
1/2" 800LB Floating Ball Valve NPT A105N Lever ASME B16.34

1/2" 800LB ball valve is made according to ASME B16.34 standard. The valve body is made of A105N. It has the structural characteristics of floating ball, full bore, anti-fire, anti-static. Its connection mode is NPT. And it has lever operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact