English

English

Get a Quote
Products

Hot Products

Company News

What Is the Difference Between Plug Valves and Ball Valves?
What Is the Difference Between Plug Valves and Ball Valves?
2026-02-20

Ball valves and plug valves differ significantly in several aspects, including structure, operating principle, mode of operation, flow control capability, sealing performance, and application scenarios. These differences enable the two types of valves to perform distinct roles in their respective fields.   Structural Differences   The ball valve, a design evolved from the plug valve, utilizes a spherical element as its core component. By rotating the ball 90° around the stem axis, the valve can be opened or closed. Its structure is straightforward, consisting primarily of a spherical closure element with a through-bore housed within the valve body.   In contrast, the structure of a plug valve is more complex. It comprises multiple components such as the valve body, bonnet, plug, seat, and stem. The closure element is a cylindrical or tapered plug that controls flow by rotating 90°, aligning or misaligning the port in the plug with the flow passage in the valve body to achieve opening or shutoff.   Operating Principle   The operating principle of a ball valve relies on the rotation of the ball to control the on-off flow of fluid. When the ball is in tight contact with the valve seat, the clearance between them is completely sealed, thereby preventing fluid leakage. When the ball rotates to a position disengaged from the seat, the fluid is allowed to flow freely through the passage inside the valve body.   The operating principle of a plug valve differs in that it primarily controls the flow passage by rotating the plug element to open or close the valve. In a plug valve, the plug is connected to the stem and rotates together with it to achieve flow control. The closure element is a tapered plug with a port, and the flow passage is designed to be perpendicular to the axis of the plug. This configuration enables the plug valve to operate more efficiently and reliably during opening and closing.   The operation of a ball valve is notably simple, requiring only a 90-degree rotation to achieve opening or closing. This design allows the flow passage to be opened or shut off quickly and smoothly when the ball is rotated by 90 degrees, providing both convenience and efficiency. In addition, ball valves offer relatively low flow resistance in the fully open or fully closed position, making them particularly suitable for applications that require rapid on-off operation.   By contrast, the operation of a plug valve is comparatively more complex, as several turns are typically required to complete the opening or closing action. The valve plug is designed in a cylindrical or tapered form and regulates fluid flow through rotation. Nevertheless, plug valves demonstrate excellent performance in flow regulation, enabling precise adjustment of the flow passage diameter and accurate control of flow rate. However, due to the relatively complicated operating process, plug valves are not well suited for frequent operation...

Blind Plate Valve
Blind Plate Valve
2026-02-11

In industrial valve systems, a high-quality blind plate valve ensures safe and efficient operation of equipment. It is suitable for gas pipelines in metallurgy, chemical processing, petroleum, and municipal systems, serving as an effective device for positive gas isolation.   Working Principle and Features The blind plate valve consists of left, center, and right valve bodies, a valve plate, shafts, a compensator, and two drive units (for clamping and travel respectively). The clamping mechanism uses a drive assembly to actuate a linkage system, enabling three lead screws to operate synchronously and press the valve bodies against the valve plate to achieve sealing. This design provides good synchronization and uniform sealing force distribution. Positioning rollers are installed along the outer lower edge of the valve plate to enhance sealing reliability and ensure overall stability and sealing accuracy during operation, thereby extending the service life of the valve.   Valve Operating Sequence The clamping drive unit actuates the crank and linkage mechanism, causing the lead screws to rotate synchronously and retract the center body from the sealing surfaces (release condition). Guide wheels installed on the center body move laterally and simultaneously drive the valve plate. When the valve bodies are fully opened, the valve plate is positioned between the sealing faces of the left and right bodies, and the sealing surfaces are completely disengaged. The plate drive unit is then activated. Through a lever arm mechanism, the valve plate rotates, bringing the blind plate into the pipeline position. The clamping drive unit is started again to fully clamp the valve plate, completing valve closure.   Valve Opening The clamping drive unit first fully releases the valve bodies. The turning drive unit then rotates the valve plate so that the through-port aligns with the pipeline. Finally, the clamping electric actuator presses the valve plate to complete the opening operation.

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Plug Valve
加载中...

80A JIS 10K Three Way Plug Valve RF CF8 API599

80A JIS 10K three-way plug valve is made according to API 599 standard. The valve body is made of A351 CF8. It has the structural characteristics of 3-way and L-shaped. Its connection mode is RF.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    A351 CF8
Inquiry now
Product Detail

Product Description

Type

Plug Valve

Size

80A

Pressure

JIS 10K

Connection

RF

Body Material

A351 CF8

Design Norm

API 599

End Flange Dimensions

JIS B2220

Face to Face

ASME B16.10

Pressure-Temp

ASME B16.34

Test & Inspection Code

API 598

Temperature

≤ 120°C

Applicable Medium

Water, Oil and Gas

Features

1. It has three fluid passages, suitable for controlling the flow direction of two fluids or mixing fluids;

2. Three-way plug valve can be used for various purposes, such as diverting, mixing, or regulating the proportion of two fluids. This versatility makes it widely applicable in complex fluid control systems.

Technical Drawing

Dimension Checking

Pressure Testing

Nameplate & Packing

Inspection report

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Plug Valves For Natural Gas Service
Three Way Plug Valve Wrench 4 Inch 150LB RF Flanged

The 3 way plug valve is made of WCB body and stainless steel trim as per API 599. The plug valve that could connect any two ports together is applicable for natural gas service, water, oil and so on. Quick Detail Type Plug Valve Size 4'' DesignPressure 150LB Construction Three Way Type Plug Valve ConnectionType Flange Connection Operation Lever/Wrench Design Code API 599 Face to Face ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB TemperatureRange -29℃~+425℃ Application WOG Related Knowledge What are types of plug valves? Lubricated Plug Valve The plug gets lubricated by injecting sealant through injection fitting. The lubricant make sure the smooth movement and prevent the corrosion of plug. Usually, the seat of lubricated plug valve is metal, thus they can withstand higher temperature, available in larger size and higher pressure. Non-Lubricated Plug Valve A non-metallic sleeve or liner is installed in the body cavity of the plug valve. This sleeve reduce the fricion beween plug and body. Meanwhile it prevents the corrosion of plug. Due to non-metallice sleeve, the non-lubricated plug valve cannot be used in high temperature condition. Multiway Plug Valve The multiway plug valve is used for diverting flow in transfer lines. The multiway plug valves we often see are 3 way plug valve or 4 way plug valve. Dervos Packaging Based on sufficient experience, we have developed complete packing specifications and procedures to ensure clear and safe transportation so that you can receive good and sound products. And this is also an important factor that we earn good reputation from our customers.

Plug Valve
2" 150LB Four Way Plug Valve API599 WCB RF Multi Way

2" 150LB plug valve is made according to API 599 standard. The valve body is made of A216 WCB. It has the structural characteristics of four way and bolt cover. Its connection mode is RF. And it has turbine operation mode.

Forged Steel Floating Ball Valve
DN25 PN16 Forged Steel Floating Ball Valve Body ASTM ISO 17292

DN25 PN16 Forged Steel Floating Ball Valve is made according to ISO17292 standard. The valve body is made of ASTM-A105. It has the structural characteristics of Split Body, Floating Ball, Full Bore, Fire-safe, Anti-static, Blow-out Proof Stem. Its connection mode is RF . And it has hand wheel operation mode.

Trunnion Mounted Ball Valve
3" 600LB Trunnion Mounted Ball Valve RF F304 API6D

3" 600LB ball valve is made according to API6D standard. The valve body is made of A182 F304. It has the structural characteristics of fixed ball, full bore, anti-fire and anti-static and anti-flying valve stem. Its connection mode is RF. And it has IP68 waterproof turbine box operation mode.

DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF
DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF

DN125 PN16 gate valve is made according to DIN 3352 standard. The valve body is made of 1.4408. It has the structural characteristics of bolt cover, rising stem, elastic wedge, with SS316 insulation jacket and structural length of 325mm. Its connection mode is RF EN1092-1 B1. And it has hand wheel operation mode.

Dual Plate Wafer Check Valve
WCB 4” CL150 Dual Plate Wafer Check Valve LUG

4” CL150 Dual Plate Wafer Type Check Valve is made according to API 598  standard. The valve body is made of A216 WCB+MONEL. It has the structural characteristics of Double Plate. Its connection mode is LUG. 

Gate Valve
3/4" 150LB Forged Steel Gate Valve RF F316L API602 Handwheel

3/4" 150LB gate valve is made according to API 602 standard. The valve body is made of ASTM A182 F316L. It has the structural characteristics of bolt cover, rising stem and rigid wedge. Its connection mode is RF integral flange. And it has hand wheel operation mode.

10 150LB Swing Check Valve, RF Connection, Body WCB, API 6D
10" 150LB Swing Check Valve, RF Connection, Body WCB, API 6D

10" 150LB swing check valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of swing type, built-in type, fully open. Its connection mode is RF.

Strainer
8" 150LB Cast Steel Y Type Strainer RF CF3M ASME B16.34

8" 150LB strainer is made according to ASME B16.34 standard. The valve body is made of CF3M. It has the structural characteristics of Y type. Its connection mode is RF.

Tee Pattern Globe Valve
DN25 PN250 Tee Pattern Globe Valve Forging Steel API 602

Quick Detail Type Globe Valve DN DN50 PN PN250 Construction Tee Pattern; Bolt Bonnet; Connection Type NPT Operation Type Handwheel Design Code API602 Screw End ASME/ANSI B1.20.1 Test & Inspection API598 Body Material A105+STL Trim Material A276-420 Medium Water, Oil and Gas Origin China   Features -- Globe valves have both good throttling and shutoff capabilities -- Easy to maintain and resurface the seats -- Can be used as a stop-check valve if the disc is not attached to the stem Technical Drawing Dimension Check Witnessing Tests Dervos Packaging Good packing means good first impression. Just imagine how do you feel differently when seeing two boxes below? And you will know the reason why in Dervos we value packaging so much. In Dervos, we make sure- Every valve is clean and dry. -Clean the valve before packing -Add anti-rust oil -Add flange cover   No damage to valves in delivery. -Fix the valve with iron wire -Separate the valve with soft material -Layer the valve with plywood -Strong box and clear shipping mark

Globe Valve
Cast Steel Globe Valve DN65 PN40 Hand Wheel 1.0619 EN13709

DN65 PN40 globe valve is made according to BS EN 13709 standard. The valve body is made of EN 10213 1.0619. It has the structural characteristics of bolted cover and straight through type. Its connection mode is EN1092-1 B. And it has hand wheel operation mode.

1/2 800LB Forged Steel Gate Valve API602 F5 SW H.W.
1/2" 800LB Forged Steel Gate Valve API602 F5 SW H.W.

1/2" 800LB Forged Steel Gate Valve is made according to API 602 standard. The valve body is made of A182-F5. It has the structural characteristics of Bolted Bonnet, Solid Wedge. Its connection mode is SW. And it has hand wheel operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact