English

English

Get a Quote
Products

Hot Products

Company News

Three Common Causes of Valve Leakage and Emergency Remedies
Three Common Causes of Valve Leakage and Emergency Remedies
2025-05-28

In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

Cryogenic Floating Ball Valve 4Inch 300LB RF Lever
加载中...

Cryogenic Floating Ball Valve 4Inch 300LB RF Lever

The 4 inch cryogenic ball valve, designed as per API609, has many parts equipped RPTFE --It has the lowest coefficient of friction and the best corrosion resistance of any known plastic material, so that the valve can handle quite extreme situations.

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    F316
  • Method of Operation:

    Lever
Inquiry now
Product Detail

Quick Details

Type

Ball Valve

Nominal Diameter

4"

NominalPressure

300LB

Construction

Bolted Weld, Extended Stem or Bonnet, Full Port

Connection

RF

Operation

Lever Operated

Body Material

F316

Design Code

API 607

Pressure & Temp

ASME B16.34

End toEnd Dimension

ASME B16.10

Connection Size of Flanges 

ASME B16.5

Inspection

API598

Temperature Range

-196℃~+120℃

Media

Oil, Water, Gas


Design Feature 

Extended stem and bonnet to position the stem packing above the cryogenic fluid and provide a column of warmer vapor that insulates the stem seal from the effects of low temperatures.

High-density seats and seals throughout the valve enable the valve to be rated down to -196°C service.


Vent hole is in the upstream face of the ball. This prevents the cold liquids from becoming trapped in the valve.

Stem primary seal and bearing are located near the packing end of the extended stem thus keeping these parts from the low temperatures and providing a blow-out proof stem design.

Valves are specially cleaned to remove all grease and oils that may react with the service media

Each valve after cleaning is packaged and sealed in a heavy poly bag to keep the valve clean until installation.


Technical Drawing


Our Service

Dervos customer service is one of our biggest competitive advantages. In Dervos, we provide-

 

1. Quotation within 24 hours or no later than 3 days

This will let you meet the quotation submission deadline and enhance your working efficiency

 

2. Weekly status report of your order

In this way, you will have a clear picture of your order. You do not need to waste time on pushing us for status update

 

3. An 18-month warranty period

A warranty certificate will issued after shipment and you will not have any concern after buying valves.

 

4. Solutions to complaints within 3 days

Quick and responsible actions to complaints will protect your reputation and reduce the financial loss as much as possible.




Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
LF2 Cryogenic Ball Valve
Extended Stem Cryogenic Ball Valve LF2 1500LB BW

The Class 1500 4'' cryogenic ball valve is designed with extended stem for low temperature application. The valve is made of LF2 with fully welded body, butt weld end and gearbox operation.  Design Feature -Fully welded & forged body -Extended stem or bonnet -Full port design and piggable -Anti blow-out stem -Antistatic function - Automatic cavity relief -Bi-directional seat and DBB design -With stem and seat grease fittings Quick Detail Type Ball Valve Size 4" Pressure ANSI 1500 Construction One-Piece Body, Fully Weld, Extended Stem or Bonnet, Full Port Connection Butt Weld Operation Gearbox Operated Body Material Low Temperature Steel A350 LF2 Design Code API 6D Pressure & Temp ASME B16.34 End to End Dimension ASME B16.10 End Connection ASME B16.25 Inspection API 598 Temperature Range -46℃~+200℃ Media Oil, Water, Gas Related Knowledge What is the difference between full bore and reduced bore ball valve? The internal diameter of a full bore ball valve is the same as the inner diameter of the pipe. The full bore ball valve has little resistance and pressure drop to the flow. Plus, the full bore ball valve is piggable. However, the internal diameter of a reduced port (standard port) ball valve is smaller than the inner pipe size. Flow restriction caused by the reduced port will cause a pressure drop. And sometimes a pig to clean the pipe will get stuck in the reduced port ball valve. Certificates Dervos could provide reports upon clients’ requests, such as ISO 9001, PED CE, EAC, API 607, API 6D, API 6A and etc.

Strainer
6" 150LB Y Type Strainer RF LCB ASME B16.34

6" 150LB strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A352 LCB. It has the structural characteristics of Y-shaped and bolt cover. Its connection mode is RF.

Pressure Balance Plug Valve With Lever
Inverted Pressure Balanced Lubricated WCB 2 Inch Plug Valve

Inverted Pressure Balanced Lubricated Plug Valve is 2 inch and WCB body with metal seated. Apply to temperature lower than 80℃. Quick Detail  Type Plug Valve Size 2” DesignPressure 150LB Construction Lubricated Type Plug Valve Connection Type Flange Connection Operation Lever/Wrench Design Code API6D Face to Face ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection  API6D Body Material A216 WCB Temperature Range <80℃ Application WOG

ECOFUEL Turns Waste into Diesel with DERVOS Valve Solutions
ECOFUEL Turns Waste into Diesel with DERVOS Valve Solutions

In 2017, DERVOS contributed to an innovative environmental initiative led by ECOFUEL, an emerging canadian player in clean technology. This groundbreaking project aimed to produce sustainable diesel from solid waste, setting a precedent in green energy solutions. DERVOS is proud to have provided 136 sets of premium valves to support this pioneering effort.

Body WCB, 8 150LB Cast Steel Globe Valve, RF Connection, Handwheel
Body WCB, 8" 150LB Cast Steel Globe Valve, RF Connection, Handwheel

8" 150LB cast steel globe valve is made according to BS 1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of straight through, rising stem, plug valve disc. Its connection mode is RF. And it has hand wheel operation mode.

Check Valve
DIN 3840 Swing Check Valve DN200 PN40 Cast Steel

Made of high-quality casting, the DIN swing check valve has a cast steel body with bolted bonnet structure and flange connection. The valve is designed with good sealing performance and minimal water hammer effect.

Wafer Check Valve
CF8M 20" 150LB Dual Plate Wafer Check Valve API594

20" 150LB wafer check valve is made according to API594 standard. The valve body is made of A351 CF8M. It has dual plate and built-in type structural features. Its connection mode is Wafer RF.

Ball Valve
8" 2500LB Trunnion Mounted Ball Valve API 6D RTJ F51

8" 2500LB ball valve is made according to API 6D standard. The valve body is made of F51. It has the structural characteristics of trunnion mounted ball, full bore. It also has the design of anti-fire, anti-static and anti-flying valve stem. In addition, it also meets NACE MR0175 requirements.

Swing Check Valve
API 6" 150LB Cast Steel Swing Check Valve RF BC WCB

6" 150LB check valve is made according to API 6D standard. The valve body is made of WCB. It has the structural characteristics of swing type and external pin. Its connection mode is RF.

DIN Globe Valve Angle Type
Angle Type Globe Valve DN65 PN16 GS-C25 Rising Stem

The DN65 PN16 angle type globe valve is made of cast steel 1.0619 body and ss304 trim material, with rising stem, handwheel, RF flange.  Quick Detail Type Globe Valve Norminal Size DN 65 NorminalPressure PN 16 Construction Angle Pattern, BB ConnectionType Flanged Operation Handwheel Design Code DIN 3356 Face to Face EN 558 Connection EN1092 Test & Inspection EN12266 Body Material GS-C25 (1.0619) ApplicableTemp -29℃~+425℃ Application WOG Related Knowledge Why use an angle type globe valve? Angle globe valve turns the flow direction by 90 degrees without using an elbow or the extra pipe weld, which reduce the number of joints on the pipeline, save the installation time, and reduce the pressure drop & flow resistance. The angle pattern globe valve are used for application with periods of pulsating flow, since they are able to handle slugging effect. Our Main Product Range As an experienced supplier and vendor of industrial valves, Dervos supply cast steel valve, forged steel valve, cast iron valve, stainless steel valve, bronze valve, brass valve and alloy steel valve and so on, suitable for sea water, water, oil, and gas application.

Check Valve
6" 600LB Dual Plate Wafer Type Check Valve WCB+316 API 594

6" 600LB check valve is made according to API 594 standard. The valve body is made of A216 WCB+316. It has the structural characteristics of dual plate and wafer type. Its connection mode is wafer.

Floating Ball Valve
1 Inch 800LB Floating Ball Valve Stainless Steel SW

Dervos manufactures a versatile range of Ball Valves in single, two and three piece constructions. The valves are available in full-bore and regular-bore designs, in a variety of end connections and materials to meet your requirements.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact