English

English

Get a Quote
Products

Hot Products

Company News

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

What are the differences between globe valves and gate valves?
What are the differences between globe valves and gate valves?
2025-12-12

In industrial piping systems, globe valves and gate valves are two of the most commonly used shutdown valves. Although both are designed for starting and stopping fluid flow, they differ significantly in structural design, operating principles, application scenarios, and overall performance. Understanding these differences helps engineers make informed selections that ensure system efficiency, reliability, and cost-effectiveness.   I. Key Differences in Structure and Operating Principles   1. Different opening and closing mechanisms Globe Valve: The disc moves up and down along a path perpendicular to the flow direction. Shutoff is achieved when the disc and seat sealing surfaces come into full contact. Gate Valve: The gate moves vertically in a manner similar to a “gate” that is either fully open or fully closed, with sealing achieved through surface compression.  This means that globe valves are suitable for precise throttling, while gate valves are mainly used for full open or full shut service.   2. Flow path design differences A globe valve has an S-shaped flow path that forces the medium to change direction, resulting in higher flow resistance. A gate valve features a straight-through flow path with minimal resistance and low pressure drop, making it better suited for long-distance transmission.   II. Differences in Application Scenarios   1. Throttling vs. On/Off Service Globe valves can be used for throttling and flow regulation, making them suitable for applications requiring high sealing performance and precise flow control, such as steam, cooling water, and various process media.   Gate valves are not suitable for throttling, as operating them in a partially open position may cause gate vibration, damage to the sealing surfaces, and fluid-induced impact. Gate valves are ideal for large-diameter pipelines where low flow resistance is required and switching frequency is relatively low, including oil transportation, water supply and drainage, and power plant systems.   2. Size range and installation space Globe valves are generally used in small to medium sizes (more common below DN50). Their body structure is heavier and requires more installation space. Gate valves are suitable for medium to large sizes. Due to their simpler design, they offer a cost advantage in larger dimensions.   III. Sealing Performance and Pressure Ratings   1. Differences in sealing surface design The globe valve features a tapered sealing surface, which achieves tight shutoff through axial compression, making it easier to obtain reliable sealing performance. The gate valve uses either parallel or wedge-type sealing surfaces. Its sealing effectiveness depends largely on the pressure applied by the gate and is more influenced by the system’s medium pressure.   2. Pressure and temperature adaptability Both valve types are suitable for medium- to high-pressure and high-temperature applications....

Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
2025-12-05

Butterfly valves are widely used in industrial piping systems due to their compact structure, lightweight design, and quick operation. They are commonly applied in water treatment, chemical, power, oil, and gas industries. However, when dealing with industrial standards across different countries and regions, selecting a butterfly valve that meets the relevant specifications is crucial. This article provides a detailed analysis of butterfly valve design and selection requirements based on three key standards: API 609, ISO 5752, and GB/T 12238.   1. API 609 — American Petroleum Institute Standard   API 609 is the American Petroleum Institute (API) standard for metal-seated butterfly valves, primarily used in the oil, gas, and chemical industries. The standard defines valve structure, materials, dimensions, and pressure ratings to ensure reliable performance under high temperature, high pressure, and corrosive media conditions.   Key points include: ● Pressure Ratings: Covers Class 150 to 1500, accommodating various service conditions. ● Body and Disc Design: Metal-to-metal sealing requires precise alignment between disc and seat to prevent leakage under high temperature or high pressure. ● Testing and Inspection: Includes shell tests, seat leakage tests, and operational performance checks to ensure valve safety and reliability.   For high-temperature steam or high-pressure oil and gas pipelines, selecting a butterfly valve compliant with API 609 can significantly reduce leakage risk and extend equipment lifespan.   2. ISO 5752 — International Standard Organization Standard   ISO 5752 is the International Organization for Standardization (ISO) standard that specifies end dimensions and flange connection sizes for valves. It defines the face-to-face dimensions, flange sizes, and connection methods for butterfly valves, providing a consistent interface specification for industrial users worldwide.   Key points include: ● Face-to-Face Dimensions: Specifies valve lengths for different nominal diameters to ensure compatibility with piping systems. ● Flange Dimensions: Ensures valves match international standard pipe fittings, such as ANSI or DIN flanges. ● Interchangeability: Butterfly valves designed according to ISO 5752 can be replaced or serviced globally without redesigning the pipeline interface.   ISO 5752 is particularly suitable for multinational engineering projects, ensuring the universality of butterfly valves across different plants and systems.   3. JB/T8527 — Chinese National Standard   JB/T8527 is the Chinese national standard specifying the dimensions, structure, and testing requirements for metal hard-seal butterfly valves. It is widely applied in domestic industrial projects such as water conservancy, power, and petrochemical industries, serving as an important reference for procurement and acceptance.   Key ...

Cryogenic Floating Ball Valve 4Inch 300LB RF Lever
加载中...

Cryogenic Floating Ball Valve 4Inch 300LB RF Lever

The 4 inch cryogenic ball valve, designed as per API609, has many parts equipped RPTFE --It has the lowest coefficient of friction and the best corrosion resistance of any known plastic material, so that the valve can handle quite extreme situations.

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    F316
  • Method of Operation:

    Lever
Inquiry now
Product Detail

Quick Details

Type

Ball Valve

Nominal Diameter

4"

NominalPressure

300LB

Construction

Bolted Weld, Extended Stem or Bonnet, Full Port

Connection

RF

Operation

Lever Operated

Body Material

F316

Design Code

API 607

Pressure & Temp

ASME B16.34

End toEnd Dimension

ASME B16.10

Connection Size of Flanges 

ASME B16.5

Inspection

API598

Temperature Range

-196℃~+120℃

Media

Oil, Water, Gas


Design Feature 

Extended stem and bonnet to position the stem packing above the cryogenic fluid and provide a column of warmer vapor that insulates the stem seal from the effects of low temperatures.

High-density seats and seals throughout the valve enable the valve to be rated down to -196°C service.


Vent hole is in the upstream face of the ball. This prevents the cold liquids from becoming trapped in the valve.

Stem primary seal and bearing are located near the packing end of the extended stem thus keeping these parts from the low temperatures and providing a blow-out proof stem design.

Valves are specially cleaned to remove all grease and oils that may react with the service media

Each valve after cleaning is packaged and sealed in a heavy poly bag to keep the valve clean until installation.


Technical Drawing


Our Service

Dervos customer service is one of our biggest competitive advantages. In Dervos, we provide-

 

1. Quotation within 24 hours or no later than 3 days

This will let you meet the quotation submission deadline and enhance your working efficiency

 

2. Weekly status report of your order

In this way, you will have a clear picture of your order. You do not need to waste time on pushing us for status update

 

3. An 18-month warranty period

A warranty certificate will issued after shipment and you will not have any concern after buying valves.

 

4. Solutions to complaints within 3 days

Quick and responsible actions to complaints will protect your reputation and reduce the financial loss as much as possible.




Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
LF2 Cryogenic Ball Valve
Extended Stem Cryogenic Ball Valve LF2 1500LB BW

The Class 1500 4'' cryogenic ball valve is designed with extended stem for low temperature application. The valve is made of LF2 with fully welded body, butt weld end and gearbox operation.    Design Feature-Fully welded & forged body-Extended stem or bonnet-Full port design and piggable-Anti blow-out stem-Antistatic function- Automatic cavity relief-Bi-directional seat and DBB design-With stem and seat grease fittings   Quick Detail Type Ball Valve Size 4" Pressure ANSI 1500 Construction One-Piece Body, Fully Weld, Extended Stem or Bonnet, Full Port Connection Butt Weld Operation Gearbox Operated Body Material Low Temperature Steel A350 LF2 Design Code API 6D Pressure & Temp ASME B16.34 End to End Dimension ASME B16.10 End Connection ASME B16.25 Inspection API 598 Temperature Range -46℃~+200℃ Media Oil, Water, Gas   Related KnowledgeWhat is the difference between full bore and reduced bore ball valve?The internal diameter of a full bore ball valve is the same as the inner diameter of the pipe. The full bore ball valve has little resistance and pressure drop to the flow. Plus, the full bore ball valve is piggable.However, the internal diameter of a reduced port (standard port) ball valve is smaller than the inner pipe size. Flow restriction caused by the reduced port will cause a pressure drop. And sometimes a pig to clean the pipe will get stuck in the reduced port ball valve.      

RTJ, 8 2500LB DBB Trunnion Ball Valve, F51, API 6D
RTJ, 8" 2500LB DBB Trunnion Mounted Ball Valve, F51, API 6D

8" 2500LB DBB Trunnion Mounted Ball valve is made according to API 6D standard. The valve body is made of A182 F51. It has the structural characteristics of DBB Fixed Ball Valve, Full Bore, Fireproof/Electrostatic/Anti-Exposed Stem Design, Compliant with NACE MR0175. Its connection mode is RTJ. And it has Turbine operation mode with locking device.

Gate Valve
3/4" 150LB Forged Steel Gate Valve RF F316L API602 Handwheel

3/4" 150LB gate valve is made according to API 602 standard. The valve body is made of ASTM A182 F316L. It has the structural characteristics of bolt cover, rising stem and rigid wedge. Its connection mode is RF integral flange. And it has hand wheel operation mode.

Lug Type, 2 600LB Dual Plate Wafer Check Valve, Body LCC
Lug Type, 2" 600LB Dual Plate Wafer Check Valve, Body LCC, API594

2" 600LB Dual Plate Wafer Check valve is made according to API594 standard. The valve body is made of A352 LCC+SS316. It has the structural characteristics of Dual Plate Wafer type and built-in type. Its connection mode is lug.

DN50 PN40 Forged Floating Ball Valve Body F304 ISO 17292 RF
DN50 PN40 Forged Floating Ball Valve Body F304 ISO 17292 RF

DN50 PN40 Forged Floating Ball Valve is made according to ISO 17292 standard. The valve body is made of ASTM A182 F304. It has the structural characteristics of Full Bore, Floating Ball, Fire-safe and Anti-static, Blow-out Proof Stem. Its connection mode is RF. And it has hand wheel operation mode.

Axial Flow Check Valve
2”CL150 Axial Flow Check Valve RF API6D

2”CL150 Axial Flow Check Valve is made according to API 6D standard. The valve body is made of ASTM A352 LCB+316SS. It has the structural characteristics of axial flow. Its connection mode is RF.

DN200 PN25 Y Type Strainer, RF Connection, Body 1.0619, BS EN 13709
DN200 PN25 Y Type Strainer, RF Connection, Body 1.0619, BS EN 13709

DN200 PN25 Y Type Strainer is made according to BS EN 13709 standard. The valve body is made of EN 10213 1.0619. It has the structural characteristics of Y-shaped, mesh size: 1.6 mm, without drain plug. Its connection mode is RF.

Alloy Steel Gate Valve
2" 600LB Alloy Steel Gate Valve WC6 BW SCH 80 API 600

2" 600LB Alloy Steel Gate Valve is made according to API 600 standard. The valve body is made of ASTM A217 WC6. It has the structural characteristics of Body cover bolt. Its connection mode is BW SCH 80. And it has Non lifting handwheel operation mode.

Globe Valve
NPS 6 600LB Globe Valve Cast Steel RF API623

The 6 inch 600LB globe valve, made of ASTM216 WCB, is designed as per API623. It is operated by a handwheel and is connected with pipeline by RF. The disc of the globe valve contain 13Cr, therefore this valve enjoys a better ability to resist corrosion.

10 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear
10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

10" 300LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 C5. It has the structural characteristics of bolt cover, elastic gate, rising stem, OS&Y, full bore and body valve seat. Its connection mode is RF (125~250AARH). And it has bevel gear operation mode.

Weldolet Root Valve
3/4" 1500LB Weldolet Root Valve A182 F51 API602

3/4”1500LB Weldolet Root Valve is made according to API602 standard. The valve body is made of A182 F51. The valve features an inlet branch connection sized 3" × 3/4", an outlet with 1/2" NPTF threads, and a 1/2" NPT drain outlet for easy system drainage. Its connection mode is Branch Connection, X NPT. 

Butterfly Valve
14" 150LB Concentric Butterfly Valve WCB Wafer API609 Gear

14" 150LB butterfly valve is made according to API609 standard. The valve body is made of WCB+EPOXY COATING. It has the structural characteristics of center line. Its connection mode is wafer. And it has gear operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact