English

English

Get a Quote
Products

Hot Products

Company News

Troubleshooting Guide for Valve Vibration and Noise
Troubleshooting Guide for Valve Vibration and Noise
2026-01-06

These symptoms typically indicate a mismatch in fluid conditions, valve selection, or system configuration. If left unaddressed over prolonged operation, they can accelerate valve wear and pose safety risks.   Based on field experience, this article outlines the common causes of valve vibration and noise and provides practical guidance for troubleshooting.   1. Basic Manifestations of Valve Vibration and Noise   Valve vibration usually appears as noticeable oscillations of the valve body, stem, or connected piping. Noise may present as humming, whistling, or banging sounds.   These phenomena often occur simultaneously and are primarily related to the following factors: ● Abnormal flow velocity or pressure differential ● Unstable internal forces within the valve ● Mismatch between actual operating conditions and valve design   2. Common Causes Analysis   1. Excessive Flow Velocity or Pressure Differential When the fluid passes through the throttling section of a valve at high speed, strong turbulence and pressure fluctuations are likely to occur, causing periodic impact on internal components. This issue is particularly pronounced when using standard globe valves or ball valves under regulating conditions.   Typical manifestations include: ● Noise increases as the valve opening decreases ● Vibration intensifies under high-pressure-drop conditions   2. Improper Valve Selection Incorrect valve selection is a common root cause of vibration, such as: ● Using on/off valves for prolonged throttling ● Oversized valve operating at small openings for extended periods ● Insufficient pressure rating or structural rigidity of the valve These conditions can cause unstable movement of the valve plug or ball, resulting in vibration and noise.   3. Loose or Worn Internal Components After long-term operation, the following issues are commonly observed: ● Wear of valve plugs or discs ● Increased clearance between the stem and guiding parts ● Loosened fasteners   Non-design clearances amplify fluid impact, leading to persistent noise. If vibration is accompanied by metallic knocking sounds, the condition of internal components should be checked as a priority.   4. Cavitation or Flashing In liquid service, cavitation or flashing occurs when local pressure drops below the saturation vapor pressure. Bubble collapse in high-pressure regions impacts internal components, often accompanied by noise and vibration.   Typical signs include: ● Sand- or gravel-like scraping sounds ● Rapid wear of internal components ● Significant pressure fluctuations   5. Insufficient Piping Support or System Resonance Some vibrations are not directly caused by the valve. When upstream or downstream piping lacks adequate support, or when the piping structure resonates near the fluid pulsation frequency, system resonance may occur, amplifying existing vibrations...

Fire Safe Ball Valves Explained When Do You Really Need One
Fire Safe Ball Valves Explained When Do You Really Need One
2025-12-29

In industrial piping systems, safety is always a top priority. A Fire Safe Ball Valve is a specialized type of ball valve designed to maintain sealing and prevent leakage under high temperatures or fire conditions. Although it looks similar to a standard ball valve, its structure and functionality are significantly different. This article provides a detailed analysis of the working principle, applicable scenarios, and selection guidelines for Fire Safe Ball Valves.   1. Introduction to Fire Safe Ball Valves   A Fire Safe Ball Valve is designed for fire or extreme high-temperature conditions. Its core feature is the ability to maintain metal-to-metal sealing contact between the ball and the seat even if the valve seats or sealing elements are damaged by high heat, thereby preventing leakage of the medium.   Features: ● High-Temperature Sealing Protection: Even if soft sealing materials melt or burn, the metal seal continues to function. ● Compliance with International Standards: Common standards include API 607 and ISO 10497. ● High Durability: Suitable for harsh operating conditions and flammable or explosive media.   Working Principle: At normal temperatures, the soft valve seat ensures zero leakage. When the temperature rises to the soft seal failure point, a spring or preloading mechanism pushes the ball against the metal seat, achieving metal-to-metal sealing and preventing medium leakage under high temperatures or fire conditions.   2. Applicable Scenarios for Fire Safe Ball Valves   ● Petrochemical and Natural Gas: In pipelines carrying flammable or explosive media, a Fire Safe Ball Valve can effectively prevent fire from spreading through the valve. ● High-Temperature Process Systems: In steam, hot oil, or high-temperature gas pipelines, even if soft sealing materials fail due to heat, the metal seal ensures system safety. ● High Safety Requirement Applications:   In facilities such as refineries, chemical plants, and offshore platforms where safety standards are strict, using Fire Safe Ball Valves helps reduce the risk of leakage.   3. Differences Between Fire Safe Ball Valves and Standard Ball Valves   ● Sealing Materials: Standard ball valves typically use PTFE or other flexible materials for sealing, which can fail at high temperatures. Fire Safe Ball Valves engage a metal-to-metal seal when the soft seal fails. ● Design Standards: Fire Safe Ball Valves must comply with fire test standards, such as API 607, whereas standard ball valves do not have this requirement. ● Applicable Operating Conditions: Fire Safe Ball Valves are mainly used for high-temperature, high-pressure, or flammable/explosive media. Standard ball valves are suitable for conventional low- to medium-pressure, ambient-temperature media.   4. Selection Recommendations   Based on Medium Characteristics: ● For flammable, explosive, or high-temperature media, Fire Safe ...

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

LF2 Cryogenic Ball Valve
加载中...

Extended Stem Cryogenic Ball Valve LF2 1500LB BW

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Shipping Port:

    Shanghai China
  • Lead Time:

    35~60 days Ex Works After Order Confirmation
  • Material:

    Low Temperature Steel Ball Valve, A350 LF2
  • Method of Operation:

    Gearbox Operated Ball Valve
Inquiry now
Product Detail

The Class 1500 4'' cryogenic ball valve is designed with extended stem for low temperature application. The valve is made of LF2 with fully welded body, butt weld end and gearbox operation. 

 

Design Feature
-Fully welded & forged body
-Extended stem or bonnet
-Full port design and piggable
-Anti blow-out stem
-Antistatic function
- Automatic cavity relief
-Bi-directional seat and DBB design
-With stem and seat grease fittings

 

Quick Detail

Type

Ball Valve

Size

4"

Pressure

ANSI 1500

Construction

One-Piece Body, Fully Weld, Extended Stem or Bonnet, Full Port

Connection

Butt Weld

Operation

Gearbox Operated

Body Material

Low Temperature Steel A350 LF2

Design Code

API 6D

Pressure & Temp

ASME B16.34

End to End Dimension

ASME B16.10

End Connection

ASME B16.25

Inspection

API 598

Temperature Range

-46℃~+200℃

Media

Oil, Water, Gas

 

Related Knowledge
What is the difference between full bore and reduced bore ball valve?

The internal diameter of a full bore ball valve is the same as the inner diameter of the pipe. The full bore ball valve has little resistance and pressure drop to the flow. Plus, the full bore ball valve is piggable.

However, the internal diameter of a reduced port (standard port) ball valve is smaller than the inner pipe size. Flow restriction caused by the reduced port will cause a pressure drop. And sometimes a pig to clean the pipe will get stuck in the reduced port ball valve.

 

 

 

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Cryogenic Floating Ball Valve 4Inch 300LB RF Lever
Cryogenic Floating Ball Valve 4Inch 300LB RF Lever

The 4 inch cryogenic ball valve, designed as per API609, has many parts equipped RPTFE --It has the lowest coefficient of friction and the best corrosion resistance of any known plastic material, so that the valve can handle quite extreme situations.

Gate Valve
Pressure Seal Gate Valve 2 Inch 4500 LB SW API 602

The high-pressure Class 4500 gate valve is designed with PSB and SW end connection. Made of CS A105, the 2 inch gate valve follows the inspection standard API 598 and design standard API 602. Dervos could offer customizing service by providing clients with valves in different sizes, materials, standards, design pressure, structure, operation type and connection type.

16 150LB Double Eccentric Butterfly Valve Twins, Body WCB, API609, Turbine
16" 150LB Double Eccentric Butterfly Valve Twins, Body WCB, Wafer, API609, Turbine

16" 150LB double eccentric butterfly valve twins are made according to API 609 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of high performance and dual eccentricity. Two valves share one worm gear head. Its connection mode is wafer. And it has turbine operation mode.

Cast Steel Globe Valve
8" 300LB Cast Steel Globe Valve RF WCB Gear BS1873

8" 300LB globe valve is made according to BS1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of straight through type and rising stem. Its connection mode is RF. And it has gear operation mode.

Strainer
6" 150LB Y Type Strainer RF LCB ASME B16.34

6" 150LB strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A352 LCB. It has the structural characteristics of Y-shaped and bolt cover. Its connection mode is RF.

Straight Pattern Globe Valve Flanged
Cast Steel Globe Valve 12 Inch ANSI 150 WCB Gearbox

The 12 inch 150 LB cast steel globe valve is made of carbon steel WCB body and trim 8, with gearbox, RF flange, BB, and plug disc. Quick Detail Type Globe Valve Size 12'' Pressure Class 150 Construction Bolted Bonnet, Straight Pattern,Plug Disc, OS&Y Connection Flanged Connection Operation GearOperated Design Code BS 1873 Face to Face ASME B16.10 Flange Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB TrimMaterial Trim 8 Temperature Range -29℃~+427℃ Application WOG Origin China Dimension Class 150 NPS in 2 2 1/2 3 4 5 6 8 10 12 DN mm 50 65 80 100 125 150 200 250 300 L-L1 (RF-BW) in 8 8-1/2 9-1/2 11-1/2 14 16 19-1/2 24-1/2 27-1/2 mm 203 216 241 292 256 406 495 622 698 L2 (RTJ) in 8-1/2 9 10 12 14-1/2 16-1/2 20 25 28 mm 216 229 254 305 368 419 508 635 711 L3 mm 102 108 121 146 178 203 248 311 349 H (OPEN) in 14-11/16 15-3/8 16-9/16 20-1/4 21-3/16 22-5/15 24-5/8 28 39 mm 373 390 421 515 538 567 626 712 990 W in 7-7/8 9-7/8 9-7/8 11-13/16 11-13/16 13-3/4 15-3/4 17-3/4 24 mm 200 250 250 300 300 350 400 450 610 WT (kg) RF 22 29 42 64 77 105 154 288 507 BW 19 25 34 49 65 82 131 249 430 Related Knowledge What is the difference between a gate valve and a globe valve? Gate valves and globe valves are two of the most common valves we know. The differences beween them are: 1.Gate valve is used only for on-off function. But the globe valve could be used for shutting off and throttling at the same time.  2.The flow resistance of a globe valve is larger than a gate valve. Likewise, globe valves have more pressure drop than gate valves. 3.The gate valve require larger installation space than a globe valve from the perspective of opening height. 4.The gate valve sealing face suffers more abrasion than a globe valve. 5.The torque value of a globe valve is larger than a gate valve. Quality Checking Quality means everything in Dervos. Quality checking team will do inspections according to standard procedure and provide reports. Our QC team will check valve quality from casting and forging, machining, pressure testing, dimension checking, painting & packing.

Welded Ball Valve Forged Steel Metal Seated
10 Inch Fully Welded Ball Valve Metal Seated Bare Stem

The 20 inch metal seated ball valve is designed for high temperature application or application with solid particulate. The valve has welded body, RF flange connection, bare stem for actuators, belonging to trunnion mounted type. Quick Detail Type Ball Valve Size 20" Pressure ANSI 600 Construction Trunnion Type, One-Piece Body, Fully Welded, Metal to Metal Seat Connection Flanged Operation Bare Stem Body Material Forged Steel ASTM A105 Design Standard API 6D Pressure & Temp ASME B16.34 Face to Face Dimension ASME B16.10 End Connection ASME B16.5 Inspection API 598 Temperature Range -29℃~+200℃ Media Oil, Water, Gas Dimension CLASS 600 DN mm 50 65 80 100 150 200 250 300 350 400 450 500 NPS in 2 2.5 3 4 6 8 10 12 14 16 18 20 L (RF) mm 292 330 356 432 559 660 787 838 889 991 1092 1194 in 11.5 13 14 17 22 26 31 33 35 39 43 47 L1 (BW) mm 292 330 358 432 22 660 787 838 889 991 1092 1194 in 11.5 13 14 17 559 26 31 33 35 39 43 47 L2 (RTJ) mm 295 333 359 435 562 664 791 841 892 994 1095 1200 in 11.63 13.13 14.13 17.13 22.13 26.13 31.13 33.13 35 39.5 43.1 47.3 H mm 153 165 195 213 272 342 495 580 630 725 800 850 in 6.02 6.5 7.68 8.39 10.7 13.5 19.5 22.85 24.8 28.5 31.5 33.5 Do(W) mm 600 850 1250 1300 1500 *350 *350 *600 *600 *800 *800 *800 in 23.62 33.46 49.25 51.22 59 13.8 13.8 23.6 23.6 31.5 31.5 31.5 RF(Kg)   38 56 66 122 217 350 660 820 830 1160 1420 1650 BW(Kg)   31 51 58 117 200 327 605 790 800 1030 1305 1505 *Worm Gear or Electric actuator operated Related Knowledge When to use metal seated ball valve? The seat of a metal seated ball valve is often stellite, stainless steel, or tungsten carbide instead of soft seat material like ptfe, peek, nylon, teflon, and devlon. These metal to metal seat ball valves are especially applicable for: -Media with high temperature -Media with solid particulate for high abrasion -Media with severe condition, like high erosion and corrosion -Media with high viscosity like heavy oil Our Main Product Range Dervos main products include ball valves, butterfly valves, check valves, gate valves, globe valves, and plug valves in different materials, sizes, standards and types as per clients’ requests.

DN25 800LB Forged Steel Floating Ball Valve F316L ASME B16.34 BW
DN25 800LB Forged Steel Floating Ball Valve F316L ASME B16.34 BW

DN25 800LB Forged Steel Floating Ball Valve is made according to ASME B16.34 standard. The valve body is made of F316L. The valve is equipped with B8M/8M bolts and nuts, prohibits the use of Viton, zinc, copper, and their alloys, features an O-ring-free design with a gland, and uses PTFE gaskets and packing for reliable sealing. Its connection mode is BW Sch 40.The valve is operated by Handle with Locking Device, SS Material.

Wafer Check Valve
24" 300LB Dual Plate Wafer Type Check Valve WCB API594

24" 300LB check valve is made according to API 594 standard. The valve body is made of A216 WCB+STL. It has the structural characteristics of double plate and built-in type. Its connection mode is wafer type.

Gate Valve
API602, 3/4" 800LB Forged Steel Gate Valve, Body A105N, SW Connection, Handwheel

3/4" 800LB forged steel gate valve is made according to API 602 standard. The valve body is made of A105N. It has the structural characteristics of bolt cover, rising stem, OS&Y, reduced diameter. Its connection mode is SW. And it has hand wheel operation mode.

PSB Globe Valve BW 1500LB
Pressure Sealed Bonnet Globe Valve 6 Inch 1500LB BW

The 6 Inch PSB globe valve has 1500LB design pressure, butt weld end, and gearbox. The full bore globe valve is made of carbon steel WCB body and trim 5 material. Quick Detail Type Globe Valve Size 6'' Design Pressure Class 1500 Construction Pressure Seal Bonnet, Plug Type Disc, Rising Stem Connection Type Butt Weld Operation Type Bevel Gearbox Opearted Design Code BS 1873 End to End ASME B16.10 Connection End ASME B16.25 Pressure & Temperature ASME B16.34 Test & Inspection Standard API 598 Body Material Cast Steel WCB Trim Material Trim NO. 5 Temperature Range -29℃~+425℃ Application WOG Origin China Material & Dimension NPS          DN Class 2 2 1/2 3 4 6 8 50 65 80 100 150 200 L(RF)    L1(BW) 900LB 368 419 381 457 610 737 1500LB 368 419 470 546 705 832 2500LB 451 508 578 673 917 1022 L2(RTJ) 900LB 371 422 384 460 613 740 1500LB 371 422 473 549 711 841 2500LB 454 514 584 683 927 1038 H(Opne) 900LB 550 605 678 798 930 1230 1500LB 550 605 866 956 1260 1263 2500LB 560 720 755 1230 1791 2086 W 900LB 350 350 400 450 458 610* 1500LB 400 400 450 560 610* 610* 2500LB 400 450 560 310* 610* 760 Weight   (RF) 900LB 78 108 102 142 400 960 1500LB 85 110 135 230 660 1590 2500LB 140 168 247 620 1500 3200 Weight   (BW) 900LB 66 91 87 128 355 868 1500LB 77 101 122 209 595 1440 2500LB 100 118 180 438 1148 2594 *Manual gear operator is recommended No Part Name Carbon steel to ASTM Alloy steel to ASTM Stainless steel to ASTM WCB WC6 WC9  C5 CF8 CF8M CF3 CF3M 1 Body A216 WCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 2 Seat Ring A105 A182 F11 A182 F22 A182 F5 A182 F304 A182 F316 A182 F304L A182 F316L 3 Disc A105 A182 F11 A182 F22 A182 F5 A182 F304 A182 F316 A182 F304L A182 F316L 4 Stem A182 F6 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L 5 Disc nut A182 F6 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L 6 Cap SS Spiral Wound graphite or SS Spiral Wound PTFE 7 Body Seal Flexible Graphite+316 8 Adjustment Gasket F6 F6 F316 9 Stem packing Flexible Graphite+316 10 Gland Nut A194 2H A194 8 11 Gland Eyebolt A193 B7 A193 B8 12 Pin Carbon steel or Stainless Steel 13 Cap Nut Carbon steel or Stainless Steel 14 Gland A182 F6 A182 F304 A182 F316 A182 F304L A182 F316L 15 Gland Flange A216 WCB A351 CF8 16 Yoke A216 WCB A351 CF8 17 Stem Nut A439 D2 or B148-952A 18 Screw Carbon steel 19 Handwheel Ductile Iron or carbon steel 20 Name Plate Stainless steel or Aluminum 21 Washer Carbon steel 22 Nut Carbon steel or Stainless Steel Related Knowledge Why do we use pressure seal bonnet? Pressure sealed bonnet are often used for valves with high design pressure. The higher the internal pressure gets, the greater the sealing force beween body and bonnet become. For bolted bonnet valves, the body and bonnet are joined by studs and nuts with a gasket between the flange faces to facilitate sealing. However,as system pressure increases,the potential for leakage through the body and bonnet increases. But for pressure sealed valve, “bonnet take-up bolts” to pull the bonnet up and seal against the pressure seal gasket. That is why when pressure increase, the performance of pressure seal gasket between body and bonnet becomes better.

Swing Check Valve
Body WCB, 14" 150LBS Swing Check Valve, BS 1868, RF Connection

14" 150LBS swing check valve is made according to BS 1868 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of plug cover and swing type. Its connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact