English

English

Get a Quote
Products

Hot Products

Company News

Maintenance Tips to Extend the Service Life of Butterfly Valves
Maintenance Tips to Extend the Service Life of Butterfly Valves
2025-11-14

Butterfly valves are widely used as regulating and shut-off devices in industrial piping systems, valued for their simple structure, lightweight design, and rapid open-close operation. They find applications across water treatment, chemical, metallurgical, power, oil, and gas industries.   However, even high-quality butterfly valves can experience performance degradation if proper maintenance is neglected over long-term operation.This article explores the structural features, common issues, and maintenance practices to help effectively extend the service life of butterfly valves.   1. Understanding the Operational Characteristics of Butterfly Valves   A butterfly valve primarily consists of a valve body, disc, stem, sealing elements, and an actuator. Its operation relies on the rotation of the disc, driven by the stem, to control fluid flow.   During operation, the disc remains immersed in the fluid, subject to erosion, corrosion, and pressure shocks. Therefore, the valve’s lifespan is closely related to sealing performance, material selection, and the operating environment.   2. Common Factors Affecting Butterfly Valve Lifespan   Frequent Operation and High Differential Pressure High-frequency cycling or prolonged operation under high pressure and flow velocity can cause valve seat wear and stem seal aging.   Corrosive Media and Sediment Build-Up Chemical fluids or particulate-laden media can corrode the disc and clog sealing surfaces, reducing smooth operation.   Improper Installation Misalignment between the valve and pipeline, or uneven bolt tightening, may lead to eccentric disc friction and damage to sealing elements.   Lack of Regular Maintenance Neglecting routine cleaning and lubrication can increase operating torque, accelerate seal wear, and shorten the valve’s overall service life.   3. Maintenance Tips to Extend Butterfly Valve Lifespan   1. Proper Installation as the Foundation Ensure the valve body is aligned with the pipeline center to avoid eccentric stress. Use appropriate gaskets between the valve and flange to prevent localized stress. For actuated butterfly valves, confirm correct travel adjustment to avoid exceeding torque limits.   2. Regular Cleaning and Inspection Periodically remove deposits and debris from the disc surface to prevent seal surface damage. Check stem packing and seals; replace immediately if signs of aging are detected. For pipelines carrying particulate-laden media, flush the valve regularly to prevent clogging.   3. Lubrication and Corrosion Protection Apply grease to the stem, bearings, and drive components regularly to maintain smooth operation. For valves operating in seawater or corrosive environments, select corrosion-resistant coatings or materials such as aluminum bronze or duplex stainless steel.   4. Proper Operation and Control  Avoid rapid or forced operation to prevent disc deformation from impact. If the ...

Check Valve Maintenance: When to Replace and How to Fix Common Issues
Check Valve Maintenance: When to Replace and How to Fix Common Issues
2025-11-06

A check valve is a critical device that prevents backflow, widely used in water treatment, oil & gas pipelines, chemical processing, and steam systems.   After long-term operation, check valves may experience issues such as leakage, vibration noise, or sticking. If not addressed promptly, these problems can reduce system efficiency and even cause equipment damage or safety hazards.   So, how can you tell if a check valve needs replacement? Which faults can be repaired, and which require a full replacement? This article provides a systematic guide.   1. Basic Operating Principle of Check Valves   The primary function of a check valve is to automatically prevent backflow. When fluid flows in the intended direction, the valve disc is pushed open by pressure; when flow reverses, the disc closes automatically, using either its own weight or a spring, preventing backflow.   Common types include: Lift Check Valve Swing Check Valve Dual Plate Wafer Check Valve Ball Check Valve    Although their designs vary, the key criteria for determining whether a check valve needs replacement remain the same: sealing performance, operational smoothness, and structural integrity.   2. How to Determine if a Check Valve Needs Replacement   Visible Leakage (Internal or External) If fluid continues to flow backward when the valve is closed, it indicates significant wear or deformation of the sealing surfaces, preventing an effective seal. If the leakage exceeds system tolerances and cannot be corrected by cleaning or resurfacing, the valve or its sealing components should be replaced.   Sticking or Inflexible Valve Disc After long-term operation, the valve stem, guides, or disc may become stuck due to scaling, corrosion, or debris. If cleaning, descaling, or lubrication fails to restore smooth operation, replacement is recommended.   Excessive Noise or Vibration Frequent opening and closing or rapid disc rebound can cause vibration or knocking sounds. This is usually due to spring failure, loose valve components, or worn guides. Persistent or frequent noise should trigger inspection of the valve’s structural integrity and consideration for replacement.   Corroded or Cracked Valve Body or Cover Exposure to acidic, alkaline, or high-temperature fluids can corrode or crack the valve body, compromising structural strength and posing safety risks. Such damage cannot be repaired and requires full valve replacement.   Frequent Backflow or Abnormal System Pressure Fluctuations Poor sealing or delayed valve response can cause system pressure variations, including water hammer. If repeated adjustments do not resolve the issue, it indicates aging of the internal spring or disc mechanism, necessitating timely replacement.   3. Common Fault Diagnosis and Solutions   Fault: Valve fails to close completely, causing backflow Cause: Worn sealing surfaces, deformed disc, or trapped debris Solution: Remove ...

What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
2025-10-31

If you’ve ever hesitated between choosing a flanged or threaded globe valve, you’re not alone. Globe valves are common shut-off valves widely used in industries such as oil and gas, chemical processing, power generation, shipbuilding, and water treatment. While both connection types can control fluid flow, they differ significantly in terms of installation method, sealing performance, and suitable applications. This article will provide a systematic comparison of flanged and threaded globe valves from the perspectives of structure, performance, and application.   I. Fundamental Difference in Connection Methods   1.Flanged Globe Valve A flanged globe valve connects to the pipeline through flanges, with bolts tightening the flange faces together to ensure a secure seal.This connection type offers excellent strength and reliability, making it ideal for medium to high-pressure, large-diameter, and frequently operated systems.In industrial applications, typical sizes range from DN50 to DN300, and flange dimensions generally follow international standards such as ANSI, DIN, or JIS.   2. Threaded Globe ValveA threaded globe valve typically uses either internal (NPT/BSP) or external threads to connect to the pipeline, relying on the threads themselves for sealing.This compact and lightweight structure allows for easy installation and is mainly used in small-diameter (usually ≤ DN50) and low-pressure systems, including residential pipelines.Because it does not require welding or flange gaskets, a threaded valve is more cost-effective in both installation and maintenance.     II. Comparison of Sealing Performance and Maintenance   Flanged Globe ValveFlanged globe valves typically use metal or flexible graphite gaskets for sealing, offering excellent resistance to high temperature, high pressure, and corrosion.During long-term operation, maintenance or valve replacement is straightforward—simply loosen the flange bolts to disassemble the valve.   Threaded Globe ValveThe sealing of a threaded globe valve mainly depends on the thread engagement and sealing materials such as PTFE tape or sealing paste.However, repeated disassembly can damage the threads and increase the risk of leakage.For this reason, threaded globe valves are better suited for fixed installations, clean fluids, and low-pressure systems.     III. Structural Dimensions and Installation Requirements   Flanged Globe ValveFlanged globe valves are larger in size and require more installation space, but they provide superior vibration resistance and pressure tolerance.They are commonly used in industrial piping networks or pump station systems where sufficient structural support is available.   Threaded Globe ValveThreaded globe valves feature a compact design, making them ideal for confined spaces or lightweight piping systems such as laboratories, compressor inlets and outlets, and domestic water supply lines.However, thr...

LF2 Cryogenic Ball Valve
加载中...

Extended Stem Cryogenic Ball Valve LF2 1500LB BW

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Shipping Port:

    Shanghai China
  • Lead Time:

    35~60 days Ex Works After Order Confirmation
  • Material:

    Low Temperature Steel Ball Valve, A350 LF2
  • Method of Operation:

    Gearbox Operated Ball Valve
Inquiry now
Product Detail

The Class 1500 4'' cryogenic ball valve is designed with extended stem for low temperature application. The valve is made of LF2 with fully welded body, butt weld end and gearbox operation. 

 

Design Feature
-Fully welded & forged body
-Extended stem or bonnet
-Full port design and piggable
-Anti blow-out stem
-Antistatic function
- Automatic cavity relief
-Bi-directional seat and DBB design
-With stem and seat grease fittings

 

Quick Detail

Type

Ball Valve

Size

4"

Pressure

ANSI 1500

Construction

One-Piece Body, Fully Weld, Extended Stem or Bonnet, Full Port

Connection

Butt Weld

Operation

Gearbox Operated

Body Material

Low Temperature Steel A350 LF2

Design Code

API 6D

Pressure & Temp

ASME B16.34

End to End Dimension

ASME B16.10

End Connection

ASME B16.25

Inspection

API 598

Temperature Range

-46℃~+200℃

Media

Oil, Water, Gas

 

Related Knowledge
What is the difference between full bore and reduced bore ball valve?

The internal diameter of a full bore ball valve is the same as the inner diameter of the pipe. The full bore ball valve has little resistance and pressure drop to the flow. Plus, the full bore ball valve is piggable.

However, the internal diameter of a reduced port (standard port) ball valve is smaller than the inner pipe size. Flow restriction caused by the reduced port will cause a pressure drop. And sometimes a pig to clean the pipe will get stuck in the reduced port ball valve.

 

 

 

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Cryogenic Floating Ball Valve 4Inch 300LB RF Lever
Cryogenic Floating Ball Valve 4Inch 300LB RF Lever

The 4 inch cryogenic ball valve, designed as per API609, has many parts equipped RPTFE --It has the lowest coefficient of friction and the best corrosion resistance of any known plastic material, so that the valve can handle quite extreme situations.

Dervos Valve Supply for Refinery in Hungary
Dervos Valve Supply for Refinery in Hungary

Project Background   In 2024, DervosValve was selected as a trusted valve supplier for a refinery project in Hungary. The client required large-sized industrial valves capable of handling complex and high-pressure oil and gas media. With years of engineering experience and proven track records in the energy sector, Dervos was chosen to provide a complete valve solution tailored to the refinery’s operational needs.     Scope of Supply   ● 10 pcs Gate Valves ● 9 pcs Check Valves   All valves were designed and manufactured according to API and ASME standards, ensuring compliance with international refinery safety and performance requirements.     Product Design & Technical Highlights   The supplied valves feature bolted bonnet design, flexible wedge, and rising stem with yoke support, which enhance sealing reliability and facilitate maintenance. Their large-scale structure was customized to fit the refinery’s pipeline system, allowing smooth fluid control and stable operation under high temperature and pressure.     Performance in Refinery Conditions   Refinery environments involve frequent temperature fluctuations and medium impurities. Dervos valves demonstrated outstanding sealing performance, corrosion resistance, and mechanical strength, ensuring long-term stability with minimal maintenance requirements. The bolted bonnet design also makes disassembly and inspection more convenient during scheduled shutdowns.   Why the Client Chose Dervos   The Hungarian client valued Dervos for: ● Proven experience in oil & gas valve solutions ● Strict material traceability and quality control system ● Flexible customization capabilities for large valve dimensions ● On-time delivery and complete documentation support   Throughout the project, our technical and logistics teams worked closely with the client’s engineers, ensuring each valve was tested, packaged, and delivered to meet project timelines and refinery installation standards.   Customer Feedback & Project Outcome   After installation and commissioning, the refinery reported stable operation and precise flow control performance. The valves’ large design and robust construction fully met system pressure and flow requirements. The client expressed satisfaction with both the quality and Dervos’ technical responsiveness, laying a solid foundation for future cooperation.   Conclusion   This successful refinery project in Hungary once again highlights Dervos’ ability to deliver reliable, large-size valve solutions for the oil and gas industry. We continue to serve our global partners with precision engineering, professional service, and long-term reliability.

Ball Valve
4" 600LB Trunnion Mounted Ball Valve RF WCB API6D

4" 600LB ball valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of split type, fixed ball, full bore, fireproof, anti-static, anti-flying valve stem. Its connection mode is RF.

Wafer Check Valve
3" 150LB Dual Plate Wafer Check Valve RF LCC API594

3" 150LB wafer check valve is made according to API 594 standard. The valve body is made of A352 LCC+316. It has the structural characteristics of double disc and wafer type. Its connection mode is RF.

Lift Check Valve
DN80 PN16 Lift Check Valve, Body WCB, EN1092-1 B Connection

DN80 PN16 lift check valve is made according to DIN 3356 and BS 1873 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of lift type with spring. Its connection mode is EN1092-1 B.

Ball Valve
API598 2" 150LB Floating Ball Valve RF Lever ISO17292

2" 150LB ball valve is made according to ISO17292 standard. The valve body is made of B148 C95400. It has the structural characteristics of full flow, floating ball, anti-fire, anti-static and anti-flying valve stem. Its operation mode is lever and connection mode is RF.

4 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M
4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M

4" 150LB gate valve is made according to API 603 standard. The valve body is made of ASTM A351 CF8M+STL. It has the structural characteristics of bolt cover, elastic wedge and rising stem. Its test and inspection conform to API 598, and its operation mode is handwheel operation.

Dual Plate Wafer Check Valve
WCB 4” CL150 Dual Plate Wafer Check Valve LUG

4” CL150 Dual Plate Wafer Type Check Valve is made according to API 598  standard. The valve body is made of A216 WCB+MONEL. It has the structural characteristics of Double Plate. Its connection mode is LUG. 

Slimline Monoflange
Body A105N, 2"x1/2" 600LB Slimline Monoflange, Hand Wheel, RF*FNPT Operation

2"x1/2" 600LB slimline monoflange is made according to ASME B16.34 standard. The valve body is made of A105N. It has the structural characteristics of BLOCK-BLEED-BLOCK and complies with NACE MR 0175. And The structural characteristics of the first and second isolation valves are: plug cover, open stem, needle valve, and handle operation. The structural characteristics of the exhaust valve are: plug cover, needle valve, with tamper proof design. The structural characteristics of the drain valve: 1/4 "NPT-F with hexagonal threaded plug (NPT-M, ASME B1.20.1; MoC: F316L,CL.6000#). Its connection mode is RF*FNPT. And it has hand wheel operation mode.

Stainless Steel Multiport Ball Valve
3 Way Ball Valve Stainless Steel T Port 3 Inch

The 3 way T type ball valve owns flange connection, gearbox, ss304 body, ball and stem. The 3 inch flanged ball valve features in its T type three way ports which could connect any pair of ports or three ports together. Quick Detail Type Ball Valve Size 3" Pressure ANSI 300 Construction Three Way Ball Valve Connection Flanged Connection Operation Mode Gearbox Body Material A182 F304 Manufacture and Design API 6D Pressure & Temp ASME B16.34 End to End Code ASME B16.10 End Connection ASME B16.5 Inspection API 6D, API 598 Temperature Range -29℃~+200℃ Medium WOG Related Knowledge What is the difference between T port and L port 3-way ball valve? Normally speaking, 3-way ball valve can be divided into T type and L type.  A T port three-way ball valve can connect any two ports, and even connect all three ports together at the same time. However, an L port three-way ball valve can only connect the center port with either side port or disconnect three ports. FAQ 1. Can the orders always be delivered on time? Our purchasing team follows up very closely with each order to make sure on-time delivery for most of orders. In 2018, more than 90% orders were delivered on time, and we are dedicated to doing better.  2. What’s the normal delivery lead time?  For normal material, usually the delivery time is about 35~40 days, and for forged material, the delivery can even be shortened to 20~25 days. We believe the short lead time can make our offer more competitive and help you secure more orders. 3.Do you have different price levels for us? With our numerous suppliers, different price levels are available with us, so we are able to help you win more customer from different markets requesting for high, medium and low prices.

Forged Steel Globe Valve
DN25 PN160 Forged Steel Globe Valve Body A105N+STL EN1092-1 D

DN25 PN160 Forged Steel Globe Valve is made according to BS 5352 standard. The valve body is made of A105N+STL. It has the structural characteristic of bolt bonnet. Its connection mode is EN1092-1 D. And it has hand wheel operation mode.

Ball Valve
8" 2500LB Trunnion Mounted Ball Valve API 6D RTJ F51

8" 2500LB ball valve is made according to API 6D standard. The valve body is made of F51. It has the structural characteristics of trunnion mounted ball, full bore. It also has the design of anti-fire, anti-static and anti-flying valve stem. In addition, it also meets NACE MR0175 requirements.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact