English

English

Get a Quote
Products

Hot Products

Company News

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Wedge Gate Valve Design and Sealing Principle
Wedge Gate Valve Design and Sealing Principle
2026-01-30

In a wedge gate valve, the gate sealing surfaces are wedge-shaped, forming a specific angle relative to the gate centerline. The gate is driven downward by the valve stem to achieve closure. As the stem thrust increases, the normal force acting on the wedge-shaped sealing surfaces also increases, creating a forced sealing effect. This design significantly improves sealing performance under low-pressure conditions.   During opening, the gate sealing surfaces disengage from the seat immediately, which helps reduce wear on the sealing faces and extends the service life of the valve.   Applicable Standards for Wedge Gate Valves   Wedge gate valves are commonly manufactured in accordance with the following standards: ● GB/T 12234-2019 – Steel gate valves with bolted bonnet for petroleum and natural gas industries ● GB/T 12232-2005 – General-purpose flanged cast iron gate valves ● API Standard 600 (2015) – Steel gate valves for petroleum and natural gas industries   Types of Wedge Gate Valve Gates   Wedge gate valves are typically available in three gate configurations:Solid wedge gate, Flexible wedge gate, Double wedge gate.   The flexible wedge gate and double wedge gate rely on controlled deformation of the sealing surfaces to achieve improved contact with the valve seat. This design enhances sealing reliability and effectively prevents gate binding or jamming caused by temperature variations, ensuring smooth operation even under fluctuating thermal conditions.     Parallel Slide Gate Valve Design and Sealing Principle   In a parallel slide gate valve, the sealing surfaces at both the inlet and outlet ends of the gate are parallel to the gate centerline. For single-gate configurations, sealing is primarily achieved by the medium pushing a floating gate or floating seat into position. In double-gate configurations, sealing can be accomplished through springs or an expansion mechanism between the gates. Throughout the opening and closing process, the gate and seat sealing surfaces remain in constant contact, ensuring reliable sealing.   Applicable Standards for Parallel Slide Gate Valves   Common standards for parallel slide gate valves include: ● GB/T 23300-2009 – Parallel slide gate valves ● JB/T 5298-2016 – Steel parallel slide gate valves for pipelines ● API 6D – Pipeline valves for petroleum and natural gas industries   Types and Features of Parallel Slide Gate Valves   Parallel slide gate valves are available in single-gate and double-gate configurations. ● Gates may include flow-through holes or be solid. Gates with flow-through holes match the seat inner diameter, facilitating cleaning and drainage of the pipeline. ● Sealing can be configured at the inlet end, outlet end, or at both ends, depending on application requirements.   This design ensures flexibility in sealing arrangements while maintaining reliable oper...

Analysis of Valve Sealing Surface Damage Causes
Analysis of Valve Sealing Surface Damage Causes
2026-01-23

Damage to valve sealing surfaces is typically the result of multiple contributing factors, including material selection, operating conditions, operating practices, and maintenance. The following is a categorized summary of the most common causes:   1. Mechanical Damage ●  Wear: Solid particles in the medium (such as sand or welding slag) erode the sealing surface, resulting in scratches or grooves. ●  Abrasive scuffing: Frictional wear caused by relative movement of the sealing surfaces during valve opening and closing, particularly in metal-to-metal sealing pairs. ●  Impact damage: Deformation of the sealing surface caused by high-velocity fluid impingement or rapid valve opening and closing, leading to impact loading.   2. Chemical Corrosion ● Media corrosion: Acidic, alkaline, or oxidizing media directly attack the sealing surface material, such as metal corrosion caused by H₂S or chloride ions. ● Electrochemical corrosion: When sealing pairs made of dissimilar metals are exposed to an electrolyte, galvanic corrosion may occur due to electrochemical cell formation. ● Erosion–corrosion: The combined effect of corrosive media and high-velocity flow accelerates material loss on the sealing surface.   3. Thermal Damage ●Thermal fatigue:Frequent temperature fluctuations cause repeated thermal expansion and contraction of the sealing surface, leading to cracking or deformation. ●High-temperature oxidation:At elevated temperatures, the sealing surface may undergo oxidation, hardening, or burn-off, as commonly observed in steam valve applications. ●Thermal shock:Sudden exposure to high- or low-temperature media can cause cracking of the sealing surface, such as during rapid condensation or cold media ingress.   4. Improper Installation and Operation ●Installation misalignment: Incorrect valve installation or excessive piping stress can result in uneven loading on the sealing surfaces. ●Over-tightening: Excessive preload applied to the valve stem or bolting may crush or deform the sealing surface, particularly in soft-seated valves or soft sealing gaskets. ●Rough operation: Rapid opening and closing or excessive operating force can cause impact damage to the sealing surfaces.   5. Material Defects ●Improper material selection: The sealing surface material lacks sufficient resistance to process media, high temperature, or wear, such as the use of carbon steel in acidic service. ●Manufacturing defects: Defects in the hardfacing or overlay layer, including porosity, slag inclusions, or improper heat treatment, reduce wear resistance and overall sealing performance.   6. Abnormal Operating Conditions ●Cavitation / flashing: Pressure fluctuations in the fluid generate vapor bubbles that collapse and impact the sealing surface, a phenomenon commonly observed in valves installed downstream of pumps. ●Scaling / deposition: Impurities in the medium accumulate on the sealing surface, impairing tight shutoff, suc...

C95500 Triple Offset Metal Seated Butterfly Valve
加载中...

DN900 150LB C95500 Triple Offset Metal Seated Butterfly Valve Turbine

DN900 150LB Triple Offset Metal Seated Butterfly Valve is made according to API609 standard. The valve body is made of C95500. It has the structural characteristics of Triple offset, bidirectional equal pressure zero leakage. Its connection mode is FF double flange. And it has Turbine operation mode.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    C95500
  • Method of Operation:

    H,W,
Inquiry now
Product Detail

Product Description

Type

Butterfly Valve

Size

DN900

Pressure

150LB

Connection

FF double flange

Operation

Turbine

Body Material

C95500 nickel-aluminum bronze

Design Norm

API 609

Face to Face

MFR STD

Flange dimension

AWWA C207 ClassD-2018

Test & Inspection Code

API598

Temperature

-29 ~ 150°C

Applicable Medium

Water, Oil and Gas

Features

1.    The DN900 150LB C95500 Triple Offset Metal Seated Butterfly Valve offers high-performance sealing capabilities with its triple-offset design, ensuring minimal wear and long service life.

2.    Made from C95500 aluminum bronze, this valve is highly resistant to corrosion and wear, making it ideal for demanding industrial applications.

Triple Offset Metal Seated Butterfly Valve Technical Drawing

Triple Offset Metal Seated Butterfly Valve

Dimension Checking

Triple Offset Metal Seated Butterfly Valve

Pressure Testing

Triple Offset Metal Seated Butterfly Valve

PT

Triple Offset Metal Seated Butterfly Valve

Nameplate & Packing

Triple Offset Metal Seated Butterfly Valve

Inspection report

Triple Offset Metal Seated Butterfly Valve

Triple Offset Metal Seated Butterfly Valve

Triple Offset Metal Seated Butterfly Valve

Triple Offset Metal Seated Butterfly Valve

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
SS High Performance Butterfly Valve
Double Offset High Performance Butterfly Valve CF8M 3 Inch

The double offset high performance butterfly valve, with lever operation and lug body, is designed per API 609. The CF8M body and PTFE seat butterfly valve is more durable in serving the application. Quick Detail Type Butterfly Valve Size 3'' Design Pressure 150LB Construction Double Eccnetric, Soft Seat Connection Type Lug Operation Wrench Operated Design Code API 609 Face to Face ASMEB16.10 End Connection ASMEB16.5 Test & Inspection API 598 Body Material Stainless Steel CF8M Temperature Range -29℃~+150℃ Application Water, Oil, Gas Dimension Class 150 DN mm 40 50 65 80 100 125 150 200 250 300 350 400 NPS in 1 1/2 2 2 1/2 3 4 5 6 8 10 12 14 16 L mm       127 127 127 127 152 203.2 203.2 203.2 203.2 in       5 5 5 5 6 8 8 8 8 L1 mm 38.1 46 50.8 48 54 63.5 57 63.5 71.5 81 92 101.5 in 1.5 1.81 2 1.88 2.13 2.5 2.25 2.5 2.81 3.19 3.62 4 H mm 185 190 220 229 239 252 284 307 337 392 435 481 in 7328 7.48 8.7 9 9.4 9.9 11.2 12 13.3 15.4 17.1 19 D(W) mm 160 160 160 160 160 160 160 200 200 250 250 300 in 6.3 6.3 6.3 6.3 6.3 6.3 6.3 7.9 7.9 9.8 9.8 11.8 Weight  (Kg) mm       12.5 13.5 17 38 72 105 148 182 230 in 8 9 10 10 11 14.5 34.2 66 98 134 168 200 Related Knowledge What is a high performance butterfly valve? A high performance butterfly valve is often designed with double offset and PTFE seat, to handle everything from general applications to viscous and corrosive liquids; corrosive gases and steam. Compared to concentric resilient seat butterfly valve, the disc of the high performance butterfly valve is arranged and positioned off the center of the pipe bore, which could reduce wear and tear to the valve during operation and increase sealing performance. In conlusion, high performance butterfly valve is applicable for higher pressure and temperature applications. Meanwhile, it has longer cycle life and better sealing ability.

High Performance Butterfly Valve
High Performance Butterfly Valve Lug Type Gear Operated WCB

The high performance butterfly valve is designed with double eccentric or double offset structure. The valve has cast steel WCB body, stainless steel disc and stem along with RPTFE soft seat. Quick Detail Type Butterfly Valve Nominal Size 6 Inch Nominal Pressure Class 150 Structure Double Offset, Double Eccentric, Soft Seat Connection Type Lug Type Operation Gear Operated Design Code API 609 Face to Face ASME B16.10 End Connection ASME 16.5 Test & Inspection API 598 Body Material Cast Steel WCB Trim Material CF8M Disc, 17-4PH Stem, RPTFE Seat Application Water, Oil, Gas Dervos Inspection Report

150LB high performance double offset butterfly valve WAFER
150LB high performance double offset butterfly valve WAFER

The 3 inch 150LB butterfly valve has a double-offset disc design that allows the disc to move off the seat reducing running torque and seat wear. The Wafer type valve can be driven by a gearbox and handwheel or by electric, pneumatic or hydraulic actuator.

Butterfly Valve
12" 300LB High performance Double Eccentric Butterfly Valve API609

12" 300LB butterfly valve is made according to API 609 standard. The valve body is made of WCB. It has the structural characteristics of high performance and double eccentric. Its operation is turbine operation and packing is graphite.

Wafer Check Valve
DN350 PN16 Dual Plate Wafer Check Valve A126B API594

DN350 PN16 check valve is made according to API 594 standard. The valve body is made of A126 B. It has the structural characteristics of dual plate and wafer type. Its connection mode is wafer.

Steam Trap Valve
DN15 PN40 Bimetal Steam Trap Valve A105 RF GB/T22654

DN15 PN40 steam trap valve is made according to GB/T22654-2008° standard. The valve body is made of A105. It has the structural characteristics of bimetal type and BK47-Y model. Its connection mode is RF.

Swing Check Valve
1" 150LB Forged Steel Flange Swing Check Valve API 602 A105

1" 150LB swing check valve is made according to API 602 standard. The valve body is made of A105. It has the structural characteristics of bolt cover, swing type and full bore. Its connection mode is RF (Welded Flange).

Butterfly Valve
API 14" 150LB High Performance Double Eccentric Butterfly Valve WCB

14" 150LB butterfly valve is made according to API 609 standard. The valve body is made of WCB. It has the structural characteristics of double eccentric and high performance. Its connection mode is lug type. And it has turbine with locking device operation mode.

Ball Valve
DN125*DN80 PN25 Trunnion Mounted Ball Valve A105 Gear ISO

DN125*DN80 PN25 ball valve is made according to ISO 17292 standard. The valve body is made of ASTM A105. It has the structural characteristics of fixed ball and insulation jacket. Its connection mode is EN1092-1 B. And it has gear operation mode.

Gate Valve
3/4" 800LB Forged Steel Gate Valve SW*NPT F5 API602

3/4" 800LB gate valve is made according to API 602 standard. The valve body is made of A182-F5. It has the structural characteristics of rigid wedge, welded valve cover. Its connection mode is SW*NPT. And it has hand wheel operation mode.

Floating Ball Valve
M NPT Connection, 3/4" PN16 2PCS Forged Steel Floating Ball Valve, Body A105, ASME B16.34

3/4" PN16 floating ball valve is made according to ASME B16.34 standard. The valve body is made of A105. It has the structural characteristics of floating ball, full bore, anti-fire and anti-static. Its connection mode is M NPT. And it has lever operation mode.

Floating Ball Valve
2 Inch 1500LB DBB Floating Ball Valve A105 NACE MR0175

The valves are widely used in electric power, petroleum chemical industry, metallurgy, Marine, oil, natural gas, coal gas, pharmaceutical and other industries.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact