English

English

Get a Quote
Products
  • Home
  • >
  • Application Case

  • >
  • High-Performance Triple Offset Metal Seated Butterfly Valve with Gearbox Applied in a Large Copper-Gold Mine Project in Indonesia

Hot Products

Company News

Three Common Causes of Valve Leakage and Emergency Remedies
Three Common Causes of Valve Leakage and Emergency Remedies
2025-05-28

In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

High-Performance Triple Offset Metal Seated Butterfly Valve with Gearbox Applied in a Large Copper-Gold Mine Project in Indonesia
加载中...

High-Performance Triple Offset Metal Seated Butterfly Valve with Gearbox Applied in a Large Copper-Gold Mine Project in Indonesia

In a major copper-gold mining project in Indonesia, DERVOS supplied multiple high-performance triple offset metal seated C95500 butterfly valves, which were applied in slurry transportation and process pipeline systems. The operating conditions on site are highly challenging, with media containing a large number of solid particles, posing significant risks of abrasion and corrosion. The valves were required to offer excellent wear resistance, corrosion resistance, and bidirectional zero leakage sealing performance.

As a professional triple offset butterfly valve supplier, DERVOS VALVE provided a customized solution tailored to the client’s specific needs, ensuring stable system operation even in such harsh environments.

Inquiry now
Product Detail

Butterfly valve case sharing

Client Need

In a large-scale copper-gold mining project in Indonesia, DERVOS supplied multiple high-performance C95500 triple offset metal seated butterfly valves, specifically engineered for slurry transportation and process pipeline systems. The site presented extremely demanding conditions, with media containing high concentrations of solid particles—posing serious challenges related to abrasion and corrosion. To meet these requirements, the valves were designed to deliver exceptional wear resistance, corrosion resistance, and bidirectional zero-leakage sealing performance.

 

As a trusted triple offset butterfly valve manufacturer, DERVOS VALVE delivered a customized valve solution precisely tailored to the client's operational needs, ensuring long-term reliability and stable system performance under harsh industrial environments.

 

Devos Solution

DERVOS custom-engineered triple offset nickel-aluminum bronze metal seated butterfly valves for this project, featuring C95500 nickel-aluminum bronze valve bodies and F53+STL hard-faced welded seats, specifically designed for highly corrosive and abrasive environments.

 

Triple Offset Butterfly Valve – DN900/DN1500, 150LB, FF, API 609 Standard

Size: DN900Butterfly valve case sharing

Pressure Rating: 150LB

Design Features: Triple offset structure with bidirectional, zero-leakage

sealing under equal pressure.
Equipped with independent seat material: F53 + STL hard-facing. Operated via gear box.
 Connection Type: FF (Flat Face) dual flange ends.

Special Requirements:

   Face-to-face dimension per ISO 5752 (short pattern)

   Heat-treated and annealed castings

 

Excellent Wear and Corrosion Resistance

The valve body is made of C95500 nickel-aluminum bronze, known for its high strength, hardness, and outstanding wear resistance. It also offers excellent resistance to cavitation erosion and flow-induced corrosion.
In addition, C95500 exhibits good ductility and toughness—maintaining high mechanical strength while providing a certain degree of plasticity and impact resistance, which helps prevent brittle failure.
It demonstrates superior corrosion resistance in harsh media such as slurry, brine, and sulfide-rich environments.

The F53 + STL hard-faced welded sealing structure significantly enhances the sealing surface’s resistance to erosion and abrasion, ensuring long-term performance in demanding applications.

 

Bidirectional Zero-Leakage Sealing Design

The triple offset design, combined with equal-pressure sealing principles, effectively prevents bidirectional media leakage and meets the stringent safety control requirements of copper-gold mining operations.

 

High Reliability and Installation Adaptability

Designed according to the ISO 5752 short pattern standard, the valve structure allows for easy installation in confined spaces while minimizing installation stress.   

The robust gear-operated mechanism is highly durable and well-suited for the demanding operational conditions typically found in mining environments.

 

Customized Solutions to Support Project Success

In response to specific client requirements, the castings underwent annealing and tempering heat treatment to improve overall resistance to stress corrosion and ensure structural stability.

Backed by DERVOS’s comprehensive and strict quality control process, each butterfly valve is guaranteed to withstand the challenges of real-world site conditions.

 

Project Results and Operational Performance

All supplied butterfly valves successfully passed high differential pressure and solid-particle media testing, fully meeting bidirectional sealing performance standards.

The short-pattern butterfly valve design perfectly matched the client's pipeline layout, ensuring a smooth and efficient installation process.

The valves have been in service for over six months without any leakage or sealing issues. The client has expressed high recognition of their excellent wear and corrosion resistance in continuous operation.

 

DERVOS Core Competitiveness

DERVOS specializes in the customized development of triple offset butterfly valves, committed to delivering high-reliability valve solutions for complex working conditions worldwide. We focus on demanding applications involving high pressure, heavy wear, and strong corrosion, and possess extensive expertise in engineering solutions and material selection.

Our capabilities include the application of advanced materials such as C95500, C95800, 5A/6A duplex stainless steel, CF8, CF8M stainless steel, nickel-based alloys, Monel, and F53 super duplex.

DERVOS valves are fully compliant with international standards including API 609, ISO 5752, and EN 593, enabling us to provide globally recognized professional services and technical support.

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
ball valve and check valve replacement
DERVOS Valves Applied in MOL Refinery Upgrade Project in Hungarian

The refinery of MOL, located in Hungary, requires regular ball valve and check valve replacements to maintain optimal performance. As a trusted check and ball valve supplier of MOL, DERVOS continues to provide ball valves for their operations. In this project, DERVOS supplied a batch of high-performance ball valves and check valves for fluid control in oil and gas applications. They required various types and specifications of ball and check to meet the operational and sealing requirements of different pipeline systems.

ECOFUEL Turns Waste into Diesel with DERVOS Valve Solutions
ECOFUEL Turns Waste into Diesel with DERVOS Valve Solutions

In 2017, DERVOS contributed to an innovative environmental initiative led by ECOFUEL, an emerging canadian player in clean technology. This groundbreaking project aimed to produce sustainable diesel from solid waste, setting a precedent in green energy solutions. DERVOS is proud to have provided 136 sets of premium valves to support this pioneering effort.

Axial Flow Check Valve
RTJ Connection, 3" 1500LB Axial Flow Check Valve, API6D, Body A995 4A

3" 1500LB axial flow check valve is made according to API 6D standard. The valve body is made of A995 4A. It has the structural characteristics of axial flow type, and structural length of 473mm. Its connection mode is RTJ.

DN15 PN63 Forged Steel Globe Valve A105N+STL
DN15 PN63 Forged Steel Globe Valve A105N+STL EN1092-1 B

DN15 PN63 Forged Steel Globe Valve is made according to BS 5352 standard. The valve body is made of A105N+STL. It has the structural characteristics of through way type, bolt bonnet and structural length of 130mm. Its connection mode is EN1092-1 B. And it has hand wheel operation mode.

DN20 PN40 Carbon Iron Inverted Bucket Steam Trap WCB
DN20 PN40 Carbon Iron Inverted Bucket Steam Trap WCB

The inverted bucket type steam trap is known as the most reliable steam trap. The DN20 WCB inverted bucket steam traps are used in steam heating systems to stop steam from draining out, so choosing the right trap can help steam heating equipment work more efficiently.

ASME B16.34 Y Type Globe Valve
ASME B16.34 Y Type Globe Valve Plug Type Disc 4 inch CL150

Y type globe valve. CF8 body/bonnet, F304 disc/stem, SS304+flexible graphite gasket and bronze bolt and nut. Plug type disc and Raised face flange connection.  Quick Detail  Type Globe Valve Size 4 inch DesignPressure CL150 Construction Y Type Globe Valve Connection Type Raised Face Flange Connection Operation Handwheel Design Code ASME B16.34 Face to Face ASME B16.10 Test & Inspection  API 598 Body Material CF8 Temperature Range -29~538℃ Application WOG

Non Lubricated Sleeved Plug Valve
Non Lubricated Sleeved Plug Valve 6 Inch Gearbox WCB

The 6 inch sleeved plug valve features in non lubricated design and soft seat. The full port plug valve is made of carbon steel body and PTFE seat as per API 6D, with Class 150 flange connection. Quick Detail Type Plug Valve Size 6'' Design Pressure 150LB Construction Self-Lubricated Type, Sleeved Type, Soft Seat Connection Type RF Flange Operation Gearbox Operation Design Code API 599 Face to Face ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB Temperature Range -29℃~+425℃ Application Water, Oil, Gas Material & Dimension No Part Name Carbon steel to ASTM Stainless steel to ASTM WCB LCB CF8 CF8M CF3 CF3M 1 Body A216 WCB A350 LCB A351 CF8 A351 CF8M A351 CF3 A351 CF3M 2 Bonnet A216 WCB A350 LCB A351 CF8 A351 CF8M A351 CF3 A351 CF3M 3 Plug A105 A182 F304 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 4 Stem A182 F6 A182 F6 A182 F304 A182 F316 A182 F304L A182 F316L 5 Seat Ring PTFE 6 Gasket PTFE or Stainless Steel and Graphite 7 Stem Seat PTFE PTFE PTFE PTFE PTFE PTFE 8 Small spring 17-17PH 9 Small ball A182 F304 or A182 F316 10 Gland A182 F6 A182 F6 A182 F304 A182 F316 A182 F304L A182 F316L 11 Gland Flange A216 WCB A350 LCB A351 CF8 A351 CF8M A351 CF3 A351 CF3M 12 Stem packing PTFE or Graphite 13 Bonnet bolt A193 B7 or A320 L7 or A320 B8 or A193 B8M 14 Bonnet nut A194 2H or A194 4 or A194 8 Class 150 DN mm 15 20 25 40 50 65 80 100 150 200 250 300 NPS in  1/2 3/4 1 1 1/2 2 2 1/2 3 4 6 8 10 12 L(RF) mm 108    117 127 165 178 191 203 229 394 457 533 610 in 4.25 4.6 5 6.5 7 7.5 8 9 15.5 18 21 24 L1(BW) mm 140 152 165 190 216 241 283 305 457 521 559 635 in 5.5 6 6.5 7.48 8.5 9.5 11.13 12 18 20.5 22 25 L2(RTJ) mm 119 129.7 139.7 178 191 203 216 241 406 470 546 622 in 4.69 5.11 5.5 6.9 7.5 8 8.5 905 16 18.5 21.5 24.5 H mm 59 63 75 92 153 165 195 213 272 342 495 580 in 2.3 2.5 2.95 3.74 6.02 6.5 7.68 8.39 10.7 13.5 19.5 22.85 D(W) mm 130 130 160 230 400 400 600 850 1100 1500 350* 350* in 5.1 5.1 6.3 9 15.74 15.74 23.62 33.46 43.3 59 13.8 13.8 Weight  (Kg) RF 2.3 3 4.5 7 15 20 25 40 97 160 240 390 BW 2.0 2.5 3.8 5.8 12 17 21 36 92.8 154 227 365

Body WCB, 12 300LB Triple Eccentric Butterfly Valve, API609, Turbine Operation
Body WCB, 12" 300LB Triple Eccentric Butterfly Valve, API609, Turbine Operation

12" 300LB triple eccentric butterfly valve is made according to API 609 standard. The valve body is made of A216 WCB. It has the structural characteristics of triple eccentricity, bi-directional sealing. Its connection mode is RTJ. And it has turbine operation mode.

SW Connection, 1'' 800LB Forged Steel Gate Valve, Body F304L, API602, Handwheel
SW Connection, 1'' 800LB Forged Steel Gate Valve, Body F304L, API602, Handwheel

1" 800LB forged steel gate valve is made according to API602 standard. The valve body is made of A182-F304L. It has the structural characteristics of bolt cover, rigid gate plate. Its connection mode is SW. And it has hand wheel operation mode.

Butterfly Valve
API 609 Metal Seated Butterfly Valve CF8 12 Inch 150LB Gearbox

The 12 inch 150 LB triple eccentric butterfly valve is designed per API 609 with flange end and gearbox operation. The valve is made of stainless steel CF8 with metal seat design. Quick Detail Type Butterfly valve Size 12 Inch Pressure 150LB Construction Triple Offset/Eccentric, Metal Seat Connection Type Flange Operation Gearbox Design Code API 609 Face to Face ANSI B16.10 End Connection ANSI B16.5 Test & Inspection API 598 Body Material CF8 Applicable Temp -196℃~+800℃ Application Water, Oil, Gas Materials Dimension  

Plug Valve
1" 600LB Inverted Pressure Balance Lubricated Plug Valve API 6D

1" 600LB plug valve is made according to API 6D standard. The valve body is made of A105. It has the structural characteristics of oil sealed and full bore. Its connection mode is FNPT. And it has handle (with locking device) operation mode.

Strainer
6" 150LB Y Type Strainer RF LCB ASME B16.34

6" 150LB strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A352 LCB. It has the structural characteristics of Y-shaped and bolt cover. Its connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact