English

English

Get a Quote
Products

Hot Products

Company News

Troubleshooting Guide for Valve Vibration and Noise
Troubleshooting Guide for Valve Vibration and Noise
2026-01-06

These symptoms typically indicate a mismatch in fluid conditions, valve selection, or system configuration. If left unaddressed over prolonged operation, they can accelerate valve wear and pose safety risks.   Based on field experience, this article outlines the common causes of valve vibration and noise and provides practical guidance for troubleshooting.   1. Basic Manifestations of Valve Vibration and Noise   Valve vibration usually appears as noticeable oscillations of the valve body, stem, or connected piping. Noise may present as humming, whistling, or banging sounds.   These phenomena often occur simultaneously and are primarily related to the following factors: ● Abnormal flow velocity or pressure differential ● Unstable internal forces within the valve ● Mismatch between actual operating conditions and valve design   2. Common Causes Analysis   1. Excessive Flow Velocity or Pressure Differential When the fluid passes through the throttling section of a valve at high speed, strong turbulence and pressure fluctuations are likely to occur, causing periodic impact on internal components. This issue is particularly pronounced when using standard globe valves or ball valves under regulating conditions.   Typical manifestations include: ● Noise increases as the valve opening decreases ● Vibration intensifies under high-pressure-drop conditions   2. Improper Valve Selection Incorrect valve selection is a common root cause of vibration, such as: ● Using on/off valves for prolonged throttling ● Oversized valve operating at small openings for extended periods ● Insufficient pressure rating or structural rigidity of the valve These conditions can cause unstable movement of the valve plug or ball, resulting in vibration and noise.   3. Loose or Worn Internal Components After long-term operation, the following issues are commonly observed: ● Wear of valve plugs or discs ● Increased clearance between the stem and guiding parts ● Loosened fasteners   Non-design clearances amplify fluid impact, leading to persistent noise. If vibration is accompanied by metallic knocking sounds, the condition of internal components should be checked as a priority.   4. Cavitation or Flashing In liquid service, cavitation or flashing occurs when local pressure drops below the saturation vapor pressure. Bubble collapse in high-pressure regions impacts internal components, often accompanied by noise and vibration.   Typical signs include: ● Sand- or gravel-like scraping sounds ● Rapid wear of internal components ● Significant pressure fluctuations   5. Insufficient Piping Support or System Resonance Some vibrations are not directly caused by the valve. When upstream or downstream piping lacks adequate support, or when the piping structure resonates near the fluid pulsation frequency, system resonance may occur, amplifying existing vibrations...

Fire Safe Ball Valves Explained When Do You Really Need One
Fire Safe Ball Valves Explained When Do You Really Need One
2025-12-29

In industrial piping systems, safety is always a top priority. A Fire Safe Ball Valve is a specialized type of ball valve designed to maintain sealing and prevent leakage under high temperatures or fire conditions. Although it looks similar to a standard ball valve, its structure and functionality are significantly different. This article provides a detailed analysis of the working principle, applicable scenarios, and selection guidelines for Fire Safe Ball Valves.   1. Introduction to Fire Safe Ball Valves   A Fire Safe Ball Valve is designed for fire or extreme high-temperature conditions. Its core feature is the ability to maintain metal-to-metal sealing contact between the ball and the seat even if the valve seats or sealing elements are damaged by high heat, thereby preventing leakage of the medium.   Features: ● High-Temperature Sealing Protection: Even if soft sealing materials melt or burn, the metal seal continues to function. ● Compliance with International Standards: Common standards include API 607 and ISO 10497. ● High Durability: Suitable for harsh operating conditions and flammable or explosive media.   Working Principle: At normal temperatures, the soft valve seat ensures zero leakage. When the temperature rises to the soft seal failure point, a spring or preloading mechanism pushes the ball against the metal seat, achieving metal-to-metal sealing and preventing medium leakage under high temperatures or fire conditions.   2. Applicable Scenarios for Fire Safe Ball Valves   ● Petrochemical and Natural Gas: In pipelines carrying flammable or explosive media, a Fire Safe Ball Valve can effectively prevent fire from spreading through the valve. ● High-Temperature Process Systems: In steam, hot oil, or high-temperature gas pipelines, even if soft sealing materials fail due to heat, the metal seal ensures system safety. ● High Safety Requirement Applications:   In facilities such as refineries, chemical plants, and offshore platforms where safety standards are strict, using Fire Safe Ball Valves helps reduce the risk of leakage.   3. Differences Between Fire Safe Ball Valves and Standard Ball Valves   ● Sealing Materials: Standard ball valves typically use PTFE or other flexible materials for sealing, which can fail at high temperatures. Fire Safe Ball Valves engage a metal-to-metal seal when the soft seal fails. ● Design Standards: Fire Safe Ball Valves must comply with fire test standards, such as API 607, whereas standard ball valves do not have this requirement. ● Applicable Operating Conditions: Fire Safe Ball Valves are mainly used for high-temperature, high-pressure, or flammable/explosive media. Standard ball valves are suitable for conventional low- to medium-pressure, ambient-temperature media.   4. Selection Recommendations   Based on Medium Characteristics: ● For flammable, explosive, or high-temperature media, Fire Safe ...

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

Resilient Gate Valve DN1000
加载中...

Resilient Gate Valve F4 GGG50 Non-rising Stem Gearbox RF DN1000 PN10



  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    35~60 days Ex Works After Order Confirmation
  • Material:

    GGG50
  • Method of Operation:

    Gearbox
Inquiry now
Product Detail

Resilient gate valve F4, GGG50 Body Bonnet, GGG50 Disc, SS410 Stem, EPDM Seat, Brass or Bronze Stem Nut Gearbox Operation Raised Face DN1000 PN10 DIN 3352 Design Standard, Face to face DIN 3202 F4, DIN 2532 Flanged end, PN10 Working Pressure,non-rising stem

Quick Detail

Type

Resilient GateValve

Size

DN1000

Design Pressure

PN10

Construction

BB, Non rising Stem

ConnectionType

RF

OperationType

Gearbox

Body Material

GGG50

WedgeMaterial

GGG50

Stem Material

SS410

Design Code

DIN 3352

Face to Face Dimension

DIN 3202 F4

Origin

China

 

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Cast Iron Non Rising Stem Gate Valve
Cast Iron Non Rising Stem Gate Valve RF DN80 PN16

The DN80 PN16 cast iron gate valve has face to face dimension as per DIN3202 F4 or DIN3202 F5. This GG25 gate valve is designed with resilient seat, non rising stem, bb, RF flange, suitable for water treatment application. Quick Detail Type Gate Valve Nominal Diameter DN 80 Nominal Pressure PN 16 ConstructionType Non-rising stem, Bolted Bonnet, Resilient Seat ConnectionType Flanged OperationType Handwheel Operation Body Material Cast Iron GG25 TrimMaterial Cast Iron Wedge, SS420 Stem, EPDM Seat Design Code DIN 3352 End to End Code DIN 3202 Flange Dimesion DIN 2501 Medium Water Origin China Design Feature 1.Resilient seat for good sealing performance 2.Low flow resistance and small pressure drop 3.Non-rising stem for installation space is limited 4.No limitation for flow direction of medium 5.Epoxy painting available for internal and external part of the valve for anti corrosive function Company Brief Introduction Specializing in valve industry over 10 years, Dervos becomes the leading vendor of gate, globe, check, ball, butterfly, plug valves and strainers. We serve oil and gas user such as LUKOIL, MOL, YPF with local partners. Dervos show its advantages in: 1. Our partnerships with tens of stable suppliers allow us to provide customers with a wide range of high-quality products at a competitive price. 2. Each order is under strict quality control with inspection reports before delivery. 3. We value delivery time as much as our customers do. With the powerful purchasing system, we follow each order closely to secure on-time delivery. 4. One-stop solutions will be offered in a timely manner

 Ductile Iron Gate Valve
Ductile Iron Gate Valve Non Rising Stem PN10 GGG50

The ductile iron gate valve has GGG50 body material and EPDM soft seat. The valve is designed with non-rising stem, RF connection and manual operation, used in fire water. Quick Detail Type Gate Valve Size DN300, DN400 Design Pressure PN10 Construction Non-rising Stem, Soft Seat ConnectionType Flange OperationType Handwheel Operation Body Material GGG50 TrimMaterial Stem 2Cr13, EPDM Seat Medium Water Origin China Hydrostatic Pressure Test Dimension Checking Packing

DN200 PN10 Resilient Gate Valve Non-rising Stem, RF
DN200 PN10 Resilient Gate Valve Non-rising Stem, RF

The gate valve is made of ductile iron GGG50 . The valves disc is rubber-packed to get excellent sealing effect by the rubber's resilient deformation. Non-rising resilient seated gate valves solve the problem in general gate valves such as leakage, rusting etc. And it also saves space.

Gate Valve
DN800 PN10 Cast Iron Gate Valve RF GGG50 DIN

DN800 PN10 gate valve is made according to DIN standard. The valve body is made of GGG50. It has the structural characteristics of F4 drinking water soft gate. Its connection mode is RF, and it has gear operation.

Floating Ball Valve
NPT Connection, 1" 1000PSI Floating Ball Valve, Body F316, API608

1" 1000PSI floating ball valve is made according to API 608 standard. The valve body is made of A182 F316. It has the structural characteristics of 2-piece and floating ball type. Its connection mode is NPT (ASME B1.20.1). And it has lever operation mode.

DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF
DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF

DN125 PN16 gate valve is made according to DIN 3352 standard. The valve body is made of 1.4408. It has the structural characteristics of bolt cover, rising stem, elastic wedge, with SS316 insulation jacket and structural length of 325mm. Its connection mode is RF EN1092-1 B1. And it has hand wheel operation mode.

Swing Check Valve
16" CL150 Single Disc Swing Check Valve, Body CF8M, API594, Wafer Connection

16" CL150 single disc swing check valve is made according to API 594 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of single disc, swing style. Its connection mode is wafer.

Strainer
6" 150LB Y Type Strainer RF LCB ASME B16.34

6" 150LB strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A352 LCB. It has the structural characteristics of Y-shaped and bolt cover. Its connection mode is RF.

Globe Valve
11/2" 800LB Forged Steel Globe Valve SW A105 API602

11/2" 800LB globe valve is made according to API602 standard. The valve body is made of A105+STL. It has the structural characteristics of welded bonnet. Its connection mode is SW. And it has hand wheel operation mode.

Carbon Steel Slab Gate Valve
Through Conduit Slab Gate Valve DN200 PN64 Flanged

The through conduit slab gate valve, designed as per DIN standard, has the diversion hole for pipeline cleaning. The PN64 parallel disc gate valve is made of carbon steel with RF flange and handwheel. Quick Detail Type Parallel Slab Gate Valve Nominal Diameter DN 200 Nominal Pressure PN 64 Construction Parallel Slabe Gate Valve, With Diversion Hole, Bolted Bonnet, Resilient Seat Connection Flange Operation Handwheel Operation Body Material Carbon Steel Medium Water, Oil and Gas Origin China Design Feature 1.Parellel disc 2.Soft seat and metal seat for choices 3.Full bore design for pigging and less pressure drop 4.Firesafe design 5.Self relieving function 6.Grease fitting for seat and stem 7.Double block and bleed capability 8.With vent and drain port 9.Tight sealing performance  Material Part Name Material Body & Bonnet A216 WCB, CF8, CF8M, CF3, CF3M Wedge Alloy Steel (face harden treated), Stainless Steel (with Co overlay) Stem Alloy Steel (face erosion-resistant treated) Seat Alloy Steel (face harden treated, beset F plastic), Steel (with Co overlay, best F plastic) Packing PTFE O-Ring NBR, FEP Sealing Grease  

10 150LB Swing Check Valve, RF Connection, Body WCB, API 6D
10" 150LB Swing Check Valve, RF Connection, Body WCB, API 6D

10" 150LB swing check valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of swing type, built-in type, fully open. Its connection mode is RF.

DN20 PN40 Carbon Iron Inverted Bucket Steam Trap WCB
DN20 PN40 Carbon Iron Inverted Bucket Steam Trap WCB

The inverted bucket type steam trap is known as the most reliable steam trap. The DN20 WCB inverted bucket steam traps are used in steam heating systems to stop steam from draining out, so choosing the right trap can help steam heating equipment work more efficiently.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact