English

English

Get a Quote
Products

Hot Products

Company News

What Is the Difference Between Plug Valves and Ball Valves?
What Is the Difference Between Plug Valves and Ball Valves?
2026-02-20

Ball valves and plug valves differ significantly in several aspects, including structure, operating principle, mode of operation, flow control capability, sealing performance, and application scenarios. These differences enable the two types of valves to perform distinct roles in their respective fields.   Structural Differences   The ball valve, a design evolved from the plug valve, utilizes a spherical element as its core component. By rotating the ball 90° around the stem axis, the valve can be opened or closed. Its structure is straightforward, consisting primarily of a spherical closure element with a through-bore housed within the valve body.   In contrast, the structure of a plug valve is more complex. It comprises multiple components such as the valve body, bonnet, plug, seat, and stem. The closure element is a cylindrical or tapered plug that controls flow by rotating 90°, aligning or misaligning the port in the plug with the flow passage in the valve body to achieve opening or shutoff.   Operating Principle   The operating principle of a ball valve relies on the rotation of the ball to control the on-off flow of fluid. When the ball is in tight contact with the valve seat, the clearance between them is completely sealed, thereby preventing fluid leakage. When the ball rotates to a position disengaged from the seat, the fluid is allowed to flow freely through the passage inside the valve body.   The operating principle of a plug valve differs in that it primarily controls the flow passage by rotating the plug element to open or close the valve. In a plug valve, the plug is connected to the stem and rotates together with it to achieve flow control. The closure element is a tapered plug with a port, and the flow passage is designed to be perpendicular to the axis of the plug. This configuration enables the plug valve to operate more efficiently and reliably during opening and closing.   The operation of a ball valve is notably simple, requiring only a 90-degree rotation to achieve opening or closing. This design allows the flow passage to be opened or shut off quickly and smoothly when the ball is rotated by 90 degrees, providing both convenience and efficiency. In addition, ball valves offer relatively low flow resistance in the fully open or fully closed position, making them particularly suitable for applications that require rapid on-off operation.   By contrast, the operation of a plug valve is comparatively more complex, as several turns are typically required to complete the opening or closing action. The valve plug is designed in a cylindrical or tapered form and regulates fluid flow through rotation. Nevertheless, plug valves demonstrate excellent performance in flow regulation, enabling precise adjustment of the flow passage diameter and accurate control of flow rate. However, due to the relatively complicated operating process, plug valves are not well suited for frequent operation...

Blind Plate Valve
Blind Plate Valve
2026-02-11

In industrial valve systems, a high-quality blind plate valve ensures safe and efficient operation of equipment. It is suitable for gas pipelines in metallurgy, chemical processing, petroleum, and municipal systems, serving as an effective device for positive gas isolation.   Working Principle and Features The blind plate valve consists of left, center, and right valve bodies, a valve plate, shafts, a compensator, and two drive units (for clamping and travel respectively). The clamping mechanism uses a drive assembly to actuate a linkage system, enabling three lead screws to operate synchronously and press the valve bodies against the valve plate to achieve sealing. This design provides good synchronization and uniform sealing force distribution. Positioning rollers are installed along the outer lower edge of the valve plate to enhance sealing reliability and ensure overall stability and sealing accuracy during operation, thereby extending the service life of the valve.   Valve Operating Sequence The clamping drive unit actuates the crank and linkage mechanism, causing the lead screws to rotate synchronously and retract the center body from the sealing surfaces (release condition). Guide wheels installed on the center body move laterally and simultaneously drive the valve plate. When the valve bodies are fully opened, the valve plate is positioned between the sealing faces of the left and right bodies, and the sealing surfaces are completely disengaged. The plate drive unit is then activated. Through a lever arm mechanism, the valve plate rotates, bringing the blind plate into the pipeline position. The clamping drive unit is started again to fully clamp the valve plate, completing valve closure.   Valve Opening The clamping drive unit first fully releases the valve bodies. The turning drive unit then rotates the valve plate so that the through-port aligns with the pipeline. Finally, the clamping electric actuator presses the valve plate to complete the opening operation.

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Plug Valve
加载中...

2" 150LB Four Way Plug Valve API599 WCB RF Multi Way

2" 150LB plug valve is made according to API 599 standard. The valve body is made of A216 WCB. It has the structural characteristics of four way and bolt cover. Its connection mode is RF. And it has turbine operation mode.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    A216 WCB
  • Method of Operation:

    API 599
Inquiry now
Product Detail

Product Description

Type

Plug Valve

Size

2"

Pressure

150LB

Connection

RF

Operation

Turbine Operation

Body Material

A216 WCB

Design Norm

API 599

End Flange Dimensions

ASME B16.5

Face to Face

Factory standards

Test & Inspection Code

API 598

Pressure-Temp

ASME B16.34

Temperature

≤ 120°C

Applicable Medium

Water, Oil and Gas

Features

1. Simple structure, small size, light weight, easy maintenance;

2. The sealing performance is not limited by the installation direction, and the flow direction of the medium can be arbitrary.

3. It is suitable for frequent operation and can be opened and closed quickly and easily.

Technical Drawing

Dimension Checking

Pressure Testing

Painting

Nameplate & Packing

Inspection report

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Plug Valves For Natural Gas Service
Three Way Plug Valve Wrench 4 Inch 150LB RF Flanged

The 3 way plug valve is made of WCB body and stainless steel trim as per API 599. The plug valve that could connect any two ports together is applicable for natural gas service, water, oil and so on. Quick Detail Type Plug Valve Size 4'' DesignPressure 150LB Construction Three Way Type Plug Valve ConnectionType Flange Connection Operation Lever/Wrench Design Code API 599 Face to Face ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB TemperatureRange -29℃~+425℃ Application WOG Related Knowledge What are types of plug valves? Lubricated Plug Valve The plug gets lubricated by injecting sealant through injection fitting. The lubricant make sure the smooth movement and prevent the corrosion of plug. Usually, the seat of lubricated plug valve is metal, thus they can withstand higher temperature, available in larger size and higher pressure. Non-Lubricated Plug Valve A non-metallic sleeve or liner is installed in the body cavity of the plug valve. This sleeve reduce the fricion beween plug and body. Meanwhile it prevents the corrosion of plug. Due to non-metallice sleeve, the non-lubricated plug valve cannot be used in high temperature condition. Multiway Plug Valve The multiway plug valve is used for diverting flow in transfer lines. The multiway plug valves we often see are 3 way plug valve or 4 way plug valve. Dervos Packaging Based on sufficient experience, we have developed complete packing specifications and procedures to ensure clear and safe transportation so that you can receive good and sound products. And this is also an important factor that we earn good reputation from our customers.

Plug Valve
80A JIS 10K Three Way Plug Valve RF CF8 API599

80A JIS 10K three-way plug valve is made according to API 599 standard. The valve body is made of A351 CF8. It has the structural characteristics of 3-way and L-shaped. Its connection mode is RF.

Butterfly Valve
12" 300LB High performance Double Eccentric Butterfly Valve API609

12" 300LB butterfly valve is made according to API 609 standard. The valve body is made of WCB. It has the structural characteristics of high performance and double eccentric. Its operation is turbine operation and packing is graphite.

3/4 800LB Forged Steel Floating Ball Valve A105 FNPT LEVER OP.
3/4" 800LB Forged Steel Floating Ball Valve A105 FNPT LEVER OP.

3/4" 800LB Forged Steel Floating Ball Valve is made according to ASME B16.34 standard. The valve body is made of A105. It has the structural characteristics of Full Bore, Floating Ball, Split Body, Side Entry. Its connection mode is FNPT.The valve is operated by LEVER OP..

DN100 WCB Ball Valve
DIN Ball Valve DN100 PN16 WCB Floating Ball Heating Jacket

DIN Ball Valve Full Pore RF Floaing Ball Fire Proof anti-static Lever WCB Body A105+ENP Ball 17-4PH Stem F304+Ni55 Seat X750 Spring Welding Flange Heating Jacket DN100 PN16 Quick Detail Type Ball Valve Size DN100 Design Pressure PN16 Construction Floating ball valve ConnectionType Raised Face Flange OperationType Lever Body Material WCB BallMaterial A105+Ni60 Stem Material 17-4PH SeatMaterial F304+Ni55 Design Code EN12516-1 Face to Face Dimension EN558-1 End Connection EN1092-1 B1 Pressure & Temp EN12266 Medium Water, Oil and Gas Origin China

Butterfly Valve
10" 150LB Double Eccentric Butterfly Valve WCB API 609

10" 150LB butterfly valve is made according to API609 & ANSI B16.34 standard. The valve body is made of WCB + inconel. It has the structural characteristics of double eccentric, two-way pressure, reverse pressure 10bar. Its connection mode is lug type. And it has turbine operation mode.

6 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel
6" 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel

6" 150LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 WC6. It has the structural characteristics of bolt cover, elastic gate, rising stem, OS&Y, full bore, body valve seat. Its connection mode is RF (125~250AARH). And it has hand wheel operation mode.

Check Valve
DN250 PN10 Tilting Disc Check Valve RF WCB API598

DN250 PN10 check valve body is made of A216 WCB+STL. It has the structural characteristics of heavy hammer on both sides and flange type. Its connection mode is RF.

Ball Valve
DN25 PN100 Floating Ball Valve A105 Lever EN1092-1 D

DN25 PN100 ball valve is made according to ISO 17292 standard. The valve body is made of ASTM A105. It has the structural characteristics of floating ball, full bore, anti-fire, anti-static, and anti-flying valve stem. Its connection mode is EN1092-1 D. And it has lever operation mode.

Globe Valve
11/2" 800LB Forged Steel Globe Valve SW A105 API602

11/2" 800LB globe valve is made according to API602 standard. The valve body is made of A105+STL. It has the structural characteristics of welded bonnet. Its connection mode is SW. And it has hand wheel operation mode.

Ball Valve
3/4" 1500LB Floating Ball Valve F51 RF ISO17292

3/4" 1500LB ball valve is made according to ISO 17292 standard. The valve body is made of F51. It has the structural characteristics of split type, side-mounted type, full bore, floating ball, fire and anti-static, anti-flying valve rod, two-way, with lock. Its connection mode is RF. And it has Lever operation mode.

EN1984 DN150 PN40 Stainless Steel Gate Valve EN 1.4571
EN1984 DN150 PN40 Stainless Steel Gate Valve EN 1.4571

DN150 PN40 Stainless Steel Gate Valve is made according to EN 1984 standard. The valve body is made of X6CrNiMoTi17-12-2. EN 1.4571 (AISI 316Ti) is widely used in medium- to high-temperature applications where resistance to intergranular corrosion and moderate chloride corrosion is required, especially in welded systems without post-weld heat treatment. Its connection mode is EN558. And it has Hand Wheel operation mode.   Product Parameters Type Stainless Steel Gate Valve Size DN150 Pressure PN40 Connection EN 558 Operation Hand Wheel Body Material X6CrNiMoTi17-12-2 Design Norm EN 1984 Face to Face dimension EN 1092 End connection EN 558 Test & Inspection Code EN 12266-1,2 Temperature -29 ~ 425°C Applicable Medium Water, Oil and Gas   Features 1.EN 1.4571 stainless steel construction provides strong resistance to pitting and stress corrosion in aggressive media. 2.DN150 PN40 configuration designed to EN 1984 standard ensures stable operation and tight isolation in medium-pressure pipelines.   Technical Drawing Dimension Checking Pressure Testing Spectrum Nameplate & Packing

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact