English

English

Get a Quote
Products

Hot Products

Company News

Check Valve Maintenance: When to Replace and How to Fix Common Issues
Check Valve Maintenance: When to Replace and How to Fix Common Issues
2025-11-06

A check valve is a critical device that prevents backflow, widely used in water treatment, oil & gas pipelines, chemical processing, and steam systems.   After long-term operation, check valves may experience issues such as leakage, vibration noise, or sticking. If not addressed promptly, these problems can reduce system efficiency and even cause equipment damage or safety hazards.   So, how can you tell if a check valve needs replacement? Which faults can be repaired, and which require a full replacement? This article provides a systematic guide.   1. Basic Operating Principle of Check Valves   The primary function of a check valve is to automatically prevent backflow. When fluid flows in the intended direction, the valve disc is pushed open by pressure; when flow reverses, the disc closes automatically, using either its own weight or a spring, preventing backflow.   Common types include: Lift Check Valve Swing Check Valve Dual Plate Wafer Check Valve Ball Check Valve    Although their designs vary, the key criteria for determining whether a check valve needs replacement remain the same: sealing performance, operational smoothness, and structural integrity.   2. How to Determine if a Check Valve Needs Replacement   Visible Leakage (Internal or External) If fluid continues to flow backward when the valve is closed, it indicates significant wear or deformation of the sealing surfaces, preventing an effective seal. If the leakage exceeds system tolerances and cannot be corrected by cleaning or resurfacing, the valve or its sealing components should be replaced.   Sticking or Inflexible Valve Disc After long-term operation, the valve stem, guides, or disc may become stuck due to scaling, corrosion, or debris. If cleaning, descaling, or lubrication fails to restore smooth operation, replacement is recommended.   Excessive Noise or Vibration Frequent opening and closing or rapid disc rebound can cause vibration or knocking sounds. This is usually due to spring failure, loose valve components, or worn guides. Persistent or frequent noise should trigger inspection of the valve’s structural integrity and consideration for replacement.   Corroded or Cracked Valve Body or Cover Exposure to acidic, alkaline, or high-temperature fluids can corrode or crack the valve body, compromising structural strength and posing safety risks. Such damage cannot be repaired and requires full valve replacement.   Frequent Backflow or Abnormal System Pressure Fluctuations Poor sealing or delayed valve response can cause system pressure variations, including water hammer. If repeated adjustments do not resolve the issue, it indicates aging of the internal spring or disc mechanism, necessitating timely replacement.   3. Common Fault Diagnosis and Solutions   Fault: Valve fails to close completely, causing backflow Cause: Worn sealing surfaces, deformed disc, or trapped debris Solution: Remove ...

What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
2025-10-31

If you’ve ever hesitated between choosing a flanged or threaded globe valve, you’re not alone. Globe valves are common shut-off valves widely used in industries such as oil and gas, chemical processing, power generation, shipbuilding, and water treatment. While both connection types can control fluid flow, they differ significantly in terms of installation method, sealing performance, and suitable applications. This article will provide a systematic comparison of flanged and threaded globe valves from the perspectives of structure, performance, and application.   I. Fundamental Difference in Connection Methods   1.Flanged Globe Valve A flanged globe valve connects to the pipeline through flanges, with bolts tightening the flange faces together to ensure a secure seal.This connection type offers excellent strength and reliability, making it ideal for medium to high-pressure, large-diameter, and frequently operated systems.In industrial applications, typical sizes range from DN50 to DN300, and flange dimensions generally follow international standards such as ANSI, DIN, or JIS.   2. Threaded Globe ValveA threaded globe valve typically uses either internal (NPT/BSP) or external threads to connect to the pipeline, relying on the threads themselves for sealing.This compact and lightweight structure allows for easy installation and is mainly used in small-diameter (usually ≤ DN50) and low-pressure systems, including residential pipelines.Because it does not require welding or flange gaskets, a threaded valve is more cost-effective in both installation and maintenance.     II. Comparison of Sealing Performance and Maintenance   Flanged Globe ValveFlanged globe valves typically use metal or flexible graphite gaskets for sealing, offering excellent resistance to high temperature, high pressure, and corrosion.During long-term operation, maintenance or valve replacement is straightforward—simply loosen the flange bolts to disassemble the valve.   Threaded Globe ValveThe sealing of a threaded globe valve mainly depends on the thread engagement and sealing materials such as PTFE tape or sealing paste.However, repeated disassembly can damage the threads and increase the risk of leakage.For this reason, threaded globe valves are better suited for fixed installations, clean fluids, and low-pressure systems.     III. Structural Dimensions and Installation Requirements   Flanged Globe ValveFlanged globe valves are larger in size and require more installation space, but they provide superior vibration resistance and pressure tolerance.They are commonly used in industrial piping networks or pump station systems where sufficient structural support is available.   Threaded Globe ValveThreaded globe valves feature a compact design, making them ideal for confined spaces or lightweight piping systems such as laboratories, compressor inlets and outlets, and domestic water supply lines.However, thr...

Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
2025-10-24

The global industrial valve market is undergoing a quiet yet significant transformation. Growth is no longer driven mainly by new construction projects — instead, it’s increasingly fueled by the replacement and modernization of aging equipment and infrastructure. From petrochemical plants to municipal water systems and natural gas pipelines, valve upgrades have become a key priority across industries.   Aging Equipment Drives Rising Valve Replacement Demand   In many industrial facilities, valves—though seemingly durable—gradually suffer from seal wear, sluggish operation, and leakage after years of service. For plants operating over a decade, valve degradation has become a major factor affecting safety and efficiency.   With stronger focus on maintenance, process safety, and energy efficiency, end users in oil & gas, power, and water treatment sectors are accelerating valve replacement and upgrade projects. This trend aligns with a global shift toward predictive maintenance and sustainable operations, increasing demand for ball valves, gate valves, and control valves.   Market research from Mordor Intelligence and others shows a shorter valve replacement cycle due to rising maintenance costs and downtime risks. Stricter environmental and safety standards are also pushing faster modernization worldwide. In the U.S., for example, the water sector—with pipelines averaging over 40 years old—is investing in large-scale valve renewal programs to reduce leakage and unplanned shutdowns. Similar initiatives are emerging across Europe and Asia.   Infrastructure Investment Fuels Market Expansion   Beyond replacements, ongoing infrastructure investment continues to drive valve demand globally. Asia’s rapid industrial growth and the Middle East’s refining and petrochemical expansion have led to increased valve procurement.   According to GMI Insights, the global industrial valve market reached USD 75.9 billion in 2024 and is projected to hit USD 142.6 billion by 2034 (CAGR: 6.6%). Precedence Research forecasts even higher potential—up to 12.5% CAGR.   This growth is backed by large-scale upgrades in urban water networks, wastewater treatment plants, natural gas pipelines, and energy transition projects such as hydrogen and carbon capture systems, all requiring next-generation high-performance valves.   Valve Replacement Becomes a Smart Technology Upgrade   Modern valves are evolving beyond mechanical parts. With smart manufacturing and the Industrial Internet of Things (IIoT), today’s valves feature sensors, smart actuators, and remote monitoring. Engineers can now track performance in real time and conduct predictive maintenance, reducing unexpected downtime.   Advanced materials like corrosion-resistant alloys, cryogenic steels, and special polymers are extending service life and reliability—especially in harsh environments. For indu...

2500LB High Pressure Non Return Valve
加载中...

Pressure Seal Tilting Disc Check Valve 12 Inch 2500LB

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    30~55 days Ex Works After Order Confirmation
  • Material:

    Cast Steel Check Valve, Carbon Steel Check Valve
Inquiry now
Product Detail

The 12 inch high pressure check valve is designed with pressure seal bonnet, RTJ flange, tilting disc, made of carbon steel WCB body and hard face sealing.


Quick Detail

Type

Check Valve

Size

12''

DesignPressure

2500LB

Construction

Pressure Seal Bonnet, Tilting Disc Type

Connection

RTJ Flange

Design & Manufacture

ASME B16.34

End to End

ASME B16.10

Connection

ASME B16.5

Pressure & Temp

ASME B16.34

Test & Inspection

API 598

Body Material

A216 WCB

Trim Material

13CR+STL

Temp Range

-29℃~+350℃

Media

W.O.G.


Product Range
Body Material Range: WCB, WCC, WC1,CF8M, CF8, CF3, CF3M, LCB, LCC
Size Range: 2”~60” (DN50~DN1500)
End Connection Type: Flange End, Weld End
Design Pressure Range: 150lbs~600lbs 
Temp Range: -46℃~ +425℃


Suppliers With Many Non Return Valve Types

Related Knowledge

What is a tilting disc check valve?


The disc of a tilting disc check valve has a pivot point at the center of it. It is desinged to overcome weaknesses of general type swing check valve.


Compared to swing type check valve, the tilting check valve could remain fully open and steady at lower flow rates. That is to say, the swing check valve needs a high velocity of fluid to keep disc open and a higher cracking pressure.


For low pressure situation, the pressure drop of a tilting disc check valve is much lower than the swing type. But at a higher flow rate, the tilting check valve has higher pressure drop than swing type.


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Check Valve
DN250 PN10 Tilting Disc Check Valve RF WCB API598

DN250 PN10 check valve body is made of A216 WCB+STL. It has the structural characteristics of heavy hammer on both sides and flange type. Its connection mode is RF.

Tilting Disc Check Valve
10" 150LB Tilting Disc Check Valve WCB Wafer API6D

10" 150LB tilting disc check valve is made according to API 6D standard. The valve body is made of A216 WCB+SS316. It has the structural characteristics of swash plate type. Its connection mode is wafer.

Tilting Disc Check Valve
RF Connection, 3" 150LB Tilting Disc Check Valve, Body CF8M, API6D

3" 150LB tilting disc check valve is made according to API 6D & BS1868 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of tilting disc type, bolt cover. Its connection mode is RF.

Body WCB, 8 150LB Cast Steel Globe Valve, RF Connection, Handwheel
Body WCB, 8" 150LB Cast Steel Globe Valve, RF Connection, Handwheel

8" 150LB cast steel globe valve is made according to BS 1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of straight through, rising stem, plug valve disc. Its connection mode is RF. And it has hand wheel operation mode.

Globe Valve
DN25 PN63 Forged Steel Globe Valve BS5352 Handwheel A105N SS304

DN25 PN63 globe valve is made according to BS5352 standard. The valve body is made of A105N+SS304. It has the structural characteristics of bolt cover, straight through type. Its connection mode is EN1092-1 D. And it has hand wheel operation mode.

Wafer Check Valve
DN350 PN16 Dual Plate Wafer Check Valve A126B API594

DN350 PN16 check valve is made according to API 594 standard. The valve body is made of A126 B. It has the structural characteristics of dual plate and wafer type. Its connection mode is wafer.

BS 1868 Swing Type Check Valve
8 Inch Swing Check Valve 1500 LB WCB Flanged BB BS 1868

The 8 inch non return check valve conforms to BS 1868 design code, with bolted bonnet and swing type disc. The flanged check valve is made of carbon steel A216 WCB. Design Feature 1.BB: bolted bonnet 2.Swing type disc 3.Reduced bore design 4.Superior flow rates 5.Minimized friction loss 6.Standard trim material for selection 7.External or internal hinge pin available on request 8.Cylinder and counter weight available on request 9.Bare stem and actuators are available on request Quick Detail Type Check Valve Size 8'' Design Pressure ANSI 1500 Construction Bolted Bonnet, Swing Type Connection Raised Face Flange Design & Manufacture BS 1868 End to End ASME B16.10 Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material Carbon Steel Applicable Temp -29℃~+400℃ Media W.O.G. Dimension Class 1500 NPS in 2 2 1/2 3 4 6 8 10 12 DN mm 50 65 80 100 150 200 250 300 L-L1 (RF-BW) in 14-1/2 16-1/2 18-1/2 21-1/2 27-3/4 32-3/4 39 44-1/2 mm 368 419 470 546 705 832 991 1130 L2 (RTJ) in 14-5/8 16-5/8 18-5/8 21-5/8 28 33-1/8 39-3/8 45-1/8 mm 371 422 473 549 700 841 1000 1146 H (OPEN) in 12-1/4 12-1/4 13 14 15-3/4 20-7/8 22-1/16 25-5/8 mm 310 310 330 355 400 530 560 650 WT (kg) RF 69 93 140 232 490 990 1490 1970 BW 49 74 111 185 375 803 1250 1625

Retainerless Wafer Lug type Check Valve 6'' 900LB
Retainerless Wafer Lug type Check Valve 6'' 900LB

The 6 inch Wafer check valve is made in strict accordance to API 594. The body material LCC make sure the lug type valve is capable to handle harsh environment, and the INCONEL-X 750 spring promise the valve a long service life.

Angle Bellows Sealed Globe Valve
DN200 PN16 Angle Bellows Sealed Globe Valve RF 1.4408

DN200 PN16 angle bellows sealed globe valve is made according to BS EN 13709 standard. The valve body is made of EN 10213 1.4408. It has the structural characteristics of body cover bolt, exposed pole bracket, angle type, bellow seal. Its connection mode is RF. And it has hand wheel operation mode.

Strainer
3" 1500LB Y Type Strainer WCB RTJ ASME B16.34 BC

3" 1500LB strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of plug with DN20 blind flange. Its connection mode is RTJ.

Gate Valve
1" 300LB Forged Steel Gate Valve LF2 API602

1" 300LB gate valve is made according to API 602 and ASME B16.34 standard. The valve body is made of A350-LF2. It has the structural characteristics of bolt cover, exposed rod, OS&Y, reduced diameter. Its connection mode is RF integral flange. And it has polished rod operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact