English

English

Get a Quote
Products

Hot Products

Company News

Blind Plate Valve
Blind Plate Valve
2026-02-11

In industrial valve systems, a high-quality blind plate valve ensures safe and efficient operation of equipment. It is suitable for gas pipelines in metallurgy, chemical processing, petroleum, and municipal systems, serving as an effective device for positive gas isolation.   Working Principle and Features The blind plate valve consists of left, center, and right valve bodies, a valve plate, shafts, a compensator, and two drive units (for clamping and travel respectively). The clamping mechanism uses a drive assembly to actuate a linkage system, enabling three lead screws to operate synchronously and press the valve bodies against the valve plate to achieve sealing. This design provides good synchronization and uniform sealing force distribution. Positioning rollers are installed along the outer lower edge of the valve plate to enhance sealing reliability and ensure overall stability and sealing accuracy during operation, thereby extending the service life of the valve.   Valve Operating Sequence The clamping drive unit actuates the crank and linkage mechanism, causing the lead screws to rotate synchronously and retract the center body from the sealing surfaces (release condition). Guide wheels installed on the center body move laterally and simultaneously drive the valve plate. When the valve bodies are fully opened, the valve plate is positioned between the sealing faces of the left and right bodies, and the sealing surfaces are completely disengaged. The plate drive unit is then activated. Through a lever arm mechanism, the valve plate rotates, bringing the blind plate into the pipeline position. The clamping drive unit is started again to fully clamp the valve plate, completing valve closure.   Valve Opening The clamping drive unit first fully releases the valve bodies. The turning drive unit then rotates the valve plate so that the through-port aligns with the pipeline. Finally, the clamping electric actuator presses the valve plate to complete the opening operation.

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Wedge Gate Valve Design and Sealing Principle
Wedge Gate Valve Design and Sealing Principle
2026-01-30

In a wedge gate valve, the gate sealing surfaces are wedge-shaped, forming a specific angle relative to the gate centerline. The gate is driven downward by the valve stem to achieve closure. As the stem thrust increases, the normal force acting on the wedge-shaped sealing surfaces also increases, creating a forced sealing effect. This design significantly improves sealing performance under low-pressure conditions.   During opening, the gate sealing surfaces disengage from the seat immediately, which helps reduce wear on the sealing faces and extends the service life of the valve.   Applicable Standards for Wedge Gate Valves   Wedge gate valves are commonly manufactured in accordance with the following standards: ● GB/T 12234-2019 – Steel gate valves with bolted bonnet for petroleum and natural gas industries ● GB/T 12232-2005 – General-purpose flanged cast iron gate valves ● API Standard 600 (2015) – Steel gate valves for petroleum and natural gas industries   Types of Wedge Gate Valve Gates   Wedge gate valves are typically available in three gate configurations:Solid wedge gate, Flexible wedge gate, Double wedge gate.   The flexible wedge gate and double wedge gate rely on controlled deformation of the sealing surfaces to achieve improved contact with the valve seat. This design enhances sealing reliability and effectively prevents gate binding or jamming caused by temperature variations, ensuring smooth operation even under fluctuating thermal conditions.     Parallel Slide Gate Valve Design and Sealing Principle   In a parallel slide gate valve, the sealing surfaces at both the inlet and outlet ends of the gate are parallel to the gate centerline. For single-gate configurations, sealing is primarily achieved by the medium pushing a floating gate or floating seat into position. In double-gate configurations, sealing can be accomplished through springs or an expansion mechanism between the gates. Throughout the opening and closing process, the gate and seat sealing surfaces remain in constant contact, ensuring reliable sealing.   Applicable Standards for Parallel Slide Gate Valves   Common standards for parallel slide gate valves include: ● GB/T 23300-2009 – Parallel slide gate valves ● JB/T 5298-2016 – Steel parallel slide gate valves for pipelines ● API 6D – Pipeline valves for petroleum and natural gas industries   Types and Features of Parallel Slide Gate Valves   Parallel slide gate valves are available in single-gate and double-gate configurations. ● Gates may include flow-through holes or be solid. Gates with flow-through holes match the seat inner diameter, facilitating cleaning and drainage of the pipeline. ● Sealing can be configured at the inlet end, outlet end, or at both ends, depending on application requirements.   This design ensures flexibility in sealing arrangements while maintaining reliable oper...

2500LB High Pressure Non Return Valve
加载中...

Pressure Seal Tilting Disc Check Valve 12 Inch 2500LB

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    30~55 days Ex Works After Order Confirmation
  • Material:

    Cast Steel Check Valve, Carbon Steel Check Valve
Inquiry now
Product Detail

The 12 inch high pressure check valve is designed with pressure seal bonnet, RTJ flange, tilting disc, made of carbon steel WCB body and hard face sealing.


Quick Detail

Type

Check Valve

Size

12''

DesignPressure

2500LB

Construction

Pressure Seal Bonnet, Tilting Disc Type

Connection

RTJ Flange

Design & Manufacture

ASME B16.34

End to End

ASME B16.10

Connection

ASME B16.5

Pressure & Temp

ASME B16.34

Test & Inspection

API 598

Body Material

A216 WCB

Trim Material

13CR+STL

Temp Range

-29℃~+350℃

Media

W.O.G.


Product Range
Body Material Range: WCB, WCC, WC1,CF8M, CF8, CF3, CF3M, LCB, LCC
Size Range: 2”~60” (DN50~DN1500)
End Connection Type: Flange End, Weld End
Design Pressure Range: 150lbs~600lbs 
Temp Range: -46℃~ +425℃


Suppliers With Many Non Return Valve Types

Related Knowledge

What is a tilting disc check valve?


The disc of a tilting disc check valve has a pivot point at the center of it. It is desinged to overcome weaknesses of general type swing check valve.


Compared to swing type check valve, the tilting check valve could remain fully open and steady at lower flow rates. That is to say, the swing check valve needs a high velocity of fluid to keep disc open and a higher cracking pressure.


For low pressure situation, the pressure drop of a tilting disc check valve is much lower than the swing type. But at a higher flow rate, the tilting check valve has higher pressure drop than swing type.


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Check Valve
DN250 PN10 Tilting Disc Check Valve RF WCB API598

DN250 PN10 check valve body is made of A216 WCB+STL. It has the structural characteristics of heavy hammer on both sides and flange type. Its connection mode is RF.

Tilting Disc Check Valve
10" 150LB Tilting Disc Check Valve WCB Wafer API6D

10" 150LB tilting disc check valve is made according to API 6D standard. The valve body is made of A216 WCB+SS316. It has the structural characteristics of swash plate type. Its connection mode is wafer.

Tilting Disc Check Valve
RF Connection, 3" 150LB Tilting Disc Check Valve, Body CF8M, API6D

3" 150LB tilting disc check valve is made according to API 6D & BS1868 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of tilting disc type, bolt cover. Its connection mode is RF.

4 Inch Gate Valve
Cast Steel 600LB 4 Inch Gate Valve Extended Bonnet BW

The gate valve, made according to API 600, is made of CF8, one kind of cast steel. The 4 inch valve is equipped a handwheel, outside yoke, bolted bonnet and extended bonnet. All the accessories are traceable.

ASME B16.34 Y Type Globe Valve
ASME B16.34 Y Type Globe Valve Plug Type Disc 4 inch CL150

Y type globe valve. CF8 body/bonnet, F304 disc/stem, SS304+flexible graphite gasket and bronze bolt and nut. Plug type disc and Raised face flange connection.  Quick Detail  Type Globe Valve Size 4 inch DesignPressure CL150 Construction Y Type Globe Valve Connection Type Raised Face Flange Connection Operation Handwheel Design Code ASME B16.34 Face to Face ASME B16.10 Test & Inspection  API 598 Body Material CF8 Temperature Range -29~538℃ Application WOG

Ball Valve
10" 300LB Trunnion Mounted Ball Valve RF WCB API6D Turbine

10" 300LB ball valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of full bore, fixed ball, anti-fire, anti-static, and anti-flying valve stem design. Its connection mode is RF. And it has turbine operation mode.

Metal Seated Lug SS Butterfly Valve Class 150
Triple Offset Butterfly Valve Metal Seated Lug 16 Inch

The 16 inch triple offset butterfly valve is designed with metal seat, stainless steel CF8M body, disc and stem. The fully lugged butterfly valve with gearbox has Class 150 design pressure as per API 609. Design Feature 1. Small volume, light weight, simple structure 2. Multi-layer metal seated/fully metal seated 3. Firesafe design 4. Anti-blowout stem 5. Small torque value for operating easily 6. Reliable sealing and could meet zero leakage requirement 7. With function of regulating flow  8. Triple eccentric design for minimized wear of sealing face Quick Detail Type Butterfly Valve Size 16'' Pressure ANS 150 Structure Triple Eccentric, Triple Offset, Metal Seated Connection Type Lug Type Operation Gearbox Operated Design Code API 609 Face to Face ASME B16.10 End Connection ASME B16.5 Test & Inspection API 598 Body Material A351 CF8M Temperature Range -29℃~+425℃ Application Water, Oil, Gas Material No Part Name Carbon steel to ASTM Alloy steel to ASTM Stainless steel to ASTM WCB WC6 WC9  C5 CF8 CF8M CF3 CF3M 1 Body A216 WCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 2 Below Axle Bush PTFE or Stainless Steel and Graphite Spiral Wound 3 Stem A182 F6 A182 F304 A182 F304 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L 4 Seat Ring F6 Stellite 6 Stellite 6 Stellite 6 A182 F304 A182 F316 A182 F304L A182 F316L 5 Butterfly Plate A216 WCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 6 Lock Ring A105 A182 F22 A182 F22 A182 F22 A182 F304 A182 F316 A182 F304L A182 F316L 7 Pin Carbon Steel or Alloy Steel 8 Screw Carbon Steel or Alloy Steel 9 Top Axle Bush PTFE or Stainless Steel and Graphite Spiral Wound 10 Packing Graphite+SS304 11 Bolt A193 B7 A193 B7 A193 B7 A193 B7 A193 B8 A193 B8 A193 B8 A193 B8 12 Nut A194 2H A194 2H A194 2H A194 2H A194 Gr.8 A194 Gr.8 A194 Gr.8 A194 Gr.8 13 Bolt A193 B7 A193 B7 A193 B7 A193 B7 A193 B8 A193 B8 A193 B8 A193 B8 14 Nut A194 2H A194 2H A194 2H A194 2H A194 Gr.8 A194 Gr.8 A194 Gr.8 A194 Gr.8 15 Yoke A216 WCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 16 Gland A182 F6 A182 F304 A182 F304 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L

150LB high performance double offset butterfly valve WAFER
150LB high performance double offset butterfly valve WAFER

The 3 inch 150LB butterfly valve has a double-offset disc design that allows the disc to move off the seat reducing running torque and seat wear. The Wafer type valve can be driven by a gearbox and handwheel or by electric, pneumatic or hydraulic actuator.

6” 300LB Cast Steel Trunnion Ball Valve WCB API6D Plain Stem
6” 300LB Cast Steel Trunnion Ball Valve WCB API6D Plain Stem

6” 300LB Cast Steel Trunnion Ball Valve is made according to API6D standard. The valve body is made of A216-WCB. This valve features a split body design with a trunnion mounted ball and full bore construction. It is fire-safe, anti-static, and equipped with a blow-out proof stem for enhanced safety and reliable operation. Its connection mode is RF(ASME B16.5).The valve is operated by Plain Stem.

RF, DN32 PN40 Steam Trap Valve, Body A105,
RF, DN32 PN40 Steam Trap Valve, Body A105, GB/T22654

DN32 PN40 Steam Trap valve is made according to GB/T22654-2008° standard. The valve body is made of A105. It has the structural characteristics of Bimetallic sheet, reduced diameter and structural length of 180mm. Its connection mode is RF.

Cast Steel Gate Valve
DN80 PN25 Cast Steel Gate Valve Body 1.0619 H.W. DIN3352

DN80 PN25 Cast Steel Gate Valve is made according to DIN3352 standard. The valve body is made of 1.0619+STL. It has the structural characteristics of Bonnet, Straight-through Type. Its connection mode is EN1092-1 B. And it has hand wheel operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact