English

English

Get a Quote
Products

Hot Products

Company News

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

What are the differences between globe valves and gate valves?
What are the differences between globe valves and gate valves?
2025-12-12

In industrial piping systems, globe valves and gate valves are two of the most commonly used shutdown valves. Although both are designed for starting and stopping fluid flow, they differ significantly in structural design, operating principles, application scenarios, and overall performance. Understanding these differences helps engineers make informed selections that ensure system efficiency, reliability, and cost-effectiveness.   I. Key Differences in Structure and Operating Principles   1. Different opening and closing mechanisms Globe Valve: The disc moves up and down along a path perpendicular to the flow direction. Shutoff is achieved when the disc and seat sealing surfaces come into full contact. Gate Valve: The gate moves vertically in a manner similar to a “gate” that is either fully open or fully closed, with sealing achieved through surface compression.  This means that globe valves are suitable for precise throttling, while gate valves are mainly used for full open or full shut service.   2. Flow path design differences A globe valve has an S-shaped flow path that forces the medium to change direction, resulting in higher flow resistance. A gate valve features a straight-through flow path with minimal resistance and low pressure drop, making it better suited for long-distance transmission.   II. Differences in Application Scenarios   1. Throttling vs. On/Off Service Globe valves can be used for throttling and flow regulation, making them suitable for applications requiring high sealing performance and precise flow control, such as steam, cooling water, and various process media.   Gate valves are not suitable for throttling, as operating them in a partially open position may cause gate vibration, damage to the sealing surfaces, and fluid-induced impact. Gate valves are ideal for large-diameter pipelines where low flow resistance is required and switching frequency is relatively low, including oil transportation, water supply and drainage, and power plant systems.   2. Size range and installation space Globe valves are generally used in small to medium sizes (more common below DN50). Their body structure is heavier and requires more installation space. Gate valves are suitable for medium to large sizes. Due to their simpler design, they offer a cost advantage in larger dimensions.   III. Sealing Performance and Pressure Ratings   1. Differences in sealing surface design The globe valve features a tapered sealing surface, which achieves tight shutoff through axial compression, making it easier to obtain reliable sealing performance. The gate valve uses either parallel or wedge-type sealing surfaces. Its sealing effectiveness depends largely on the pressure applied by the gate and is more influenced by the system’s medium pressure.   2. Pressure and temperature adaptability Both valve types are suitable for medium- to high-pressure and high-temperature applications....

Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
2025-12-05

Butterfly valves are widely used in industrial piping systems due to their compact structure, lightweight design, and quick operation. They are commonly applied in water treatment, chemical, power, oil, and gas industries. However, when dealing with industrial standards across different countries and regions, selecting a butterfly valve that meets the relevant specifications is crucial. This article provides a detailed analysis of butterfly valve design and selection requirements based on three key standards: API 609, ISO 5752, and GB/T 12238.   1. API 609 — American Petroleum Institute Standard   API 609 is the American Petroleum Institute (API) standard for metal-seated butterfly valves, primarily used in the oil, gas, and chemical industries. The standard defines valve structure, materials, dimensions, and pressure ratings to ensure reliable performance under high temperature, high pressure, and corrosive media conditions.   Key points include: ● Pressure Ratings: Covers Class 150 to 1500, accommodating various service conditions. ● Body and Disc Design: Metal-to-metal sealing requires precise alignment between disc and seat to prevent leakage under high temperature or high pressure. ● Testing and Inspection: Includes shell tests, seat leakage tests, and operational performance checks to ensure valve safety and reliability.   For high-temperature steam or high-pressure oil and gas pipelines, selecting a butterfly valve compliant with API 609 can significantly reduce leakage risk and extend equipment lifespan.   2. ISO 5752 — International Standard Organization Standard   ISO 5752 is the International Organization for Standardization (ISO) standard that specifies end dimensions and flange connection sizes for valves. It defines the face-to-face dimensions, flange sizes, and connection methods for butterfly valves, providing a consistent interface specification for industrial users worldwide.   Key points include: ● Face-to-Face Dimensions: Specifies valve lengths for different nominal diameters to ensure compatibility with piping systems. ● Flange Dimensions: Ensures valves match international standard pipe fittings, such as ANSI or DIN flanges. ● Interchangeability: Butterfly valves designed according to ISO 5752 can be replaced or serviced globally without redesigning the pipeline interface.   ISO 5752 is particularly suitable for multinational engineering projects, ensuring the universality of butterfly valves across different plants and systems.   3. JB/T8527 — Chinese National Standard   JB/T8527 is the Chinese national standard specifying the dimensions, structure, and testing requirements for metal hard-seal butterfly valves. It is widely applied in domestic industrial projects such as water conservancy, power, and petrochemical industries, serving as an important reference for procurement and acceptance.   Key ...

2500LB High Pressure Non Return Valve
加载中...

Pressure Seal Tilting Disc Check Valve 12 Inch 2500LB

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    30~55 days Ex Works After Order Confirmation
  • Material:

    Cast Steel Check Valve, Carbon Steel Check Valve
Inquiry now
Product Detail

The 12 inch high pressure check valve is designed with pressure seal bonnet, RTJ flange, tilting disc, made of carbon steel WCB body and hard face sealing.


Quick Detail

Type

Check Valve

Size

12''

DesignPressure

2500LB

Construction

Pressure Seal Bonnet, Tilting Disc Type

Connection

RTJ Flange

Design & Manufacture

ASME B16.34

End to End

ASME B16.10

Connection

ASME B16.5

Pressure & Temp

ASME B16.34

Test & Inspection

API 598

Body Material

A216 WCB

Trim Material

13CR+STL

Temp Range

-29℃~+350℃

Media

W.O.G.


Product Range
Body Material Range: WCB, WCC, WC1,CF8M, CF8, CF3, CF3M, LCB, LCC
Size Range: 2”~60” (DN50~DN1500)
End Connection Type: Flange End, Weld End
Design Pressure Range: 150lbs~600lbs 
Temp Range: -46℃~ +425℃


Suppliers With Many Non Return Valve Types

Related Knowledge

What is a tilting disc check valve?


The disc of a tilting disc check valve has a pivot point at the center of it. It is desinged to overcome weaknesses of general type swing check valve.


Compared to swing type check valve, the tilting check valve could remain fully open and steady at lower flow rates. That is to say, the swing check valve needs a high velocity of fluid to keep disc open and a higher cracking pressure.


For low pressure situation, the pressure drop of a tilting disc check valve is much lower than the swing type. But at a higher flow rate, the tilting check valve has higher pressure drop than swing type.


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Check Valve
DN250 PN10 Tilting Disc Check Valve RF WCB API598

DN250 PN10 check valve body is made of A216 WCB+STL. It has the structural characteristics of heavy hammer on both sides and flange type. Its connection mode is RF.

Tilting Disc Check Valve
10" 150LB Tilting Disc Check Valve WCB Wafer API6D

10" 150LB tilting disc check valve is made according to API 6D standard. The valve body is made of A216 WCB+SS316. It has the structural characteristics of swash plate type. Its connection mode is wafer.

Tilting Disc Check Valve
RF Connection, 3" 150LB Tilting Disc Check Valve, Body CF8M, API6D

3" 150LB tilting disc check valve is made according to API 6D & BS1868 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of tilting disc type, bolt cover. Its connection mode is RF.

Trunnion Mounted Ball Valve
Trunnion Mounted DN300 PN63 DBB Ball Valve

Trunnion mounted ball valve DN300 PN63 full bore Double Block and Bleed PMSS seal(metal seal+soft seal)blowout proof stem gearbox operation with LF2 body, LF2+ENP ball/seat and 410 stem. Quick Detail Type Ball Valve Size DN300 Design Pressure PN63 Construction DBB,Trunnion mounted ball valve ConnectionType Flange OperationType Gearbox Operated Body Material LF2 Ball Material LF2+ENP Stem Material 410 Seat Material LF2 +ENP Design Code API 6D Face to Face Dimension API 6D End Connection ASME B16.5 Pressure & Temp ASME B16.34 Medium Water, Oil and Gas Origin China

Plug Valve
Self Lubricated Plug Valve Sleeve Type 1 inch 150LB CF3

The 1 inch self-lubricated or non-lubricated plug valve is made of A315 CF3 as per API 599. It enjoys outstanding sealing and anti-corrosion performance, owing to its PTFE seat. Besides that, the sleeve type valve is only suitable for the normal temperature up to 120 degree.   Quick Detail Type Plug Valve Size 1'' Design Pressure 150LB Construction Self-Lubricated Type, Sleeved Type, Soft Seat Connection Flange Operation Lever Operation Design Code API 599 Face to Face ASME B16.10 End Connection ASME B16.5 Test & Inspection API 598 Body Material A351 CF3 Temperature Range -29℃~+120℃ Application Water, Oil, Gas   Dimension Checking    Hydro-static Testing    

Lever, DN15 PN320 Needle Valve, FNPT, Body SS316,
Lever, DN15 PN320 Needle Valve, FNPT, Body SS316, ASME B16.34

DN15 PN320 Needle valve is made according to ASME B16.34 standard. The valve body is made of SS316. It has the structural characteristics of one in, three out (1 1/2 "internal thread inlet. 2 1/2 "internal thread outlets, 1 M20 * 1.5 internal thread outlet). Its connection mode is FNPT. And it has lever operation mode.

Globe Valve
Cast Steel Globe Valve DN65 PN40 Hand Wheel 1.0619 EN13709

DN65 PN40 globe valve is made according to BS EN 13709 standard. The valve body is made of EN 10213 1.0619. It has the structural characteristics of bolted cover and straight through type. Its connection mode is EN1092-1 B. And it has hand wheel operation mode.

DN15 PN63 Forged Steel Globe Valve A105N+STL
DN15 PN63 Forged Steel Globe Valve A105N+STL EN1092-1 B

DN15 PN63 Forged Steel Globe Valve is made according to BS 5352 standard. The valve body is made of A105N+STL. It has the structural characteristics of through way type, bolt bonnet and structural length of 130mm. Its connection mode is EN1092-1 B. And it has hand wheel operation mode.

Forged Steel Globe Valve
ASTM A182 F316 1-1/2”300LB Forged Steel Gate Valve RF H.W.

1-1/2" 300LB Forged Steel Gate Valve is made according to API 602 standard. The valve body is made of ASTM A182 F316. It has the structural characteristics of BB,OS&Y. Its connection mode is RF. And it has hand wheel operation mode.

Eccentric Butterfly Valve
EN593, DN800 PN25 Double Eccentric Butterfly Valve, RF Connection, Body WCB

DN800 PN25 double eccentric butterfly valve is made according to EN593 standard. The valve body is made of ASTM A216 WCB + Internal Epoxy Coating. It has the structural characteristics of double eccentricity, unidirectional and structural length of 200mm. Its connection mode is double flange RF EN1092-1.

Gate Valve
DN50 PN40 Forged Steel Gate Valve A105 Hand Wheel ISO

DN50 PN40 gate valve is made according to EN ISO 15761 standard. The valve body is made of ASTM A105N. It has the structural characteristics of rigid wedge, full bore, rising stem and bolted cover. Its connection mode is EN1092-1 B1. And it has hand wheel operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact