English

English

Get a Quote
Products

Hot Products

Company News

Three Common Causes of Valve Leakage and Emergency Remedies
Three Common Causes of Valve Leakage and Emergency Remedies
2025-05-28

In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

Ball Valve
加载中...

1-1/2" 150LB Lining Ball Valve FF CF8+PFA Lever GB/T12237-2007

1-1/2" 150LB ball valve is made according to GB/T12237-2007 standard. The valve body is made of CF8+PFA. It has the structural characteristics of fluorine lining. Its connection mode is FF. And it has Lever operation mode.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    CF8+PFA
  • Method of Operation:

    Lever
Inquiry now
Product Detail

Product Description

Type

Ball Valve

Size

1-1/2"

Pressure

150LB

Connection

FF

Operation

Lever

Body Material

CF8+PFA

Design Norm

GB/T12237-2007

Face to Face Length

HG/T3704-2003

Flange Dimensions

ASME B16.5

Test & Inspection Code

GB/T13927-2008

Applicable Medium

Water, Oil and Gas

Features

1. Extremely high chemical stability, suitable for any highly corrosive chemical medium;

2. The full floating ball valve structure is adopted to facilitate the ball sweeping and pipeline maintenance of the plumbing.

Technical Drawing

Dimension Checking

Pressure Testing

Nameplate & Packing

Inspection report

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Body A105N, 1 1/2'' 150LB Forged Steel Globe Valve, RF Connection, API 602
Body A105N, 1 1/2'' 150LB Forged Steel Globe Valve, RF Connection, API 602

1 1/2'' 150LB forged steel globe valve is made according to API 602 standard. The valve body is made of A105N. It has the structural characteristics of BB, OS&Y. Its connection mode is RF. And it has hand wheel operation mode.

Butterfly Valve
API 609 Metal Seated Butterfly Valve CF8 12 Inch 150LB Gearbox

The 12 inch 150 LB triple eccentric butterfly valve is designed per API 609 with flange end and gearbox operation. The valve is made of stainless steel CF8 with metal seat design. Quick Detail Type Butterfly valve Size 12 Inch Pressure 150LB Construction Triple Offset/Eccentric, Metal Seat Connection Type Flange Operation Gearbox Design Code API 609 Face to Face ANSI B16.10 End Connection ANSI B16.5 Test & Inspection API 598 Body Material CF8 Applicable Temp -196℃~+800℃ Application Water, Oil, Gas Materials Dimension  

Double Eccentric Butterfly Valve
Body CF8M, 6" 150LBS High Performance Double Eccentric Butterfly Valve, Lug Connection, Lever, API609

6" 150LBS double eccentric butterfly valve is made according to API 609 standard. The valve body is made of A351 CF8M. It has the structural characteristics of double eccentric and high performance. Its connection mode is lug. And it has lever operation mode.

Wafer Check Valve
Body CF8M, 4" 300LB Dual Plate Wafer Type Check Valve, API594

4" 300LB wafer check valve is made according to API 594 standard. The valve body is made of A351 CF8M. It has the structural characteristics of double disc and built in type. Its connection mode is wafer RF.

Globe Valve
DN25 PN40 Forged Steel Globe Valve, EN1092-1 B Connection, Body F316, BS5352

DN25 PN40 forged steel globe valve is made according to BS 5352 standard. The valve body is made of A182-F316+STL. It has the structural characteristics of bolt cover and straight through type. Its connection mode is EN1092-1 B. And it has hand wheel operation mode.

Floating Ball Valve
Forged Steel, 2" 1000WOG Floating Ball Valve, API608, Lever, BW, Body SS304

2" 1000WOG floating ball valve is made according to API608 standard. The valve body is made of A182 F304. It has the structural characteristics of full bore, floating ball and three-piece. Its connection mode is BW. And it has lever operation mode.

RTJ, 1 600LB Forged Steel Globe Valve, Body LF2, API602
RTJ, 1" 600LB Forged Steel Globe Valve, Body LF2, API602, Hand Wheel

1" 600LB Forged Steel Globe valve is made according to API602 standard. The valve body is made of ASTM A350 LF2+STL. It has the structural characteristics of welded valve cover, needle valve disc. Its connection mode is RTJ. And it has Hand Wheel operation mode.

Gate Valve
Pressure Seal Gate Valve 2 Inch 4500 LB SW API 602

The high-pressure Class 4500 gate valve is designed with PSB and SW end connection. Made of CS A105, the 2 inch gate valve follows the inspection standard API 598 and design standard API 602. Dervos could offer customizing service by providing clients with valves in different sizes, materials, standards, design pressure, structure, operation type and connection type.

Body WCB, DN50 PN16 Cast Steel Gate Valve, EN1984
Body WCB, DN50 PN16 Cast Steel Gate Valve, EN1984, Handwheel

DN50 PN16 Cast Steel gate valve is made according to BS EN 1984 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of bolt cover, exposed pole. Its connection mode is EN1092-1 B. And it has Hand Wheel operation mode.

Wafer Check Valve
Body F316, 2" 1500LB Dual Plate Wafer Type Check Valve, RF, API594

2" 1500LB wafer check valve is made according to API 594 standard. The valve body is made of A182 F316+STL 6. It has the structural characteristics of double disc, wafer type and built-in type. Its connection mode is RF.

Forged Steel Globe Valve
Forged Steel Globe Valve Straight SDNR FNPT

Globe valve with a non-return design, preventing reverse flow when in the open position, also suitable for isolation duty. Manually operated, supplied with a handwheel.

Strainer
Body LF2, ASME B16.34, RF Connection, 3/4'' 150LB Y Type Strainer

3/4" 150LB Y type strainer is made according to ASME B16.34 standard. The valve body is made of A350-LF2. It has the structural characteristics of Y-shaped, bolt cover, filter (100 microns). Its connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact