English

English

Get a Quote
Products

Hot Products

Company News

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Wedge Gate Valve Design and Sealing Principle
Wedge Gate Valve Design and Sealing Principle
2026-01-30

In a wedge gate valve, the gate sealing surfaces are wedge-shaped, forming a specific angle relative to the gate centerline. The gate is driven downward by the valve stem to achieve closure. As the stem thrust increases, the normal force acting on the wedge-shaped sealing surfaces also increases, creating a forced sealing effect. This design significantly improves sealing performance under low-pressure conditions.   During opening, the gate sealing surfaces disengage from the seat immediately, which helps reduce wear on the sealing faces and extends the service life of the valve.   Applicable Standards for Wedge Gate Valves   Wedge gate valves are commonly manufactured in accordance with the following standards: ● GB/T 12234-2019 – Steel gate valves with bolted bonnet for petroleum and natural gas industries ● GB/T 12232-2005 – General-purpose flanged cast iron gate valves ● API Standard 600 (2015) – Steel gate valves for petroleum and natural gas industries   Types of Wedge Gate Valve Gates   Wedge gate valves are typically available in three gate configurations:Solid wedge gate, Flexible wedge gate, Double wedge gate.   The flexible wedge gate and double wedge gate rely on controlled deformation of the sealing surfaces to achieve improved contact with the valve seat. This design enhances sealing reliability and effectively prevents gate binding or jamming caused by temperature variations, ensuring smooth operation even under fluctuating thermal conditions.     Parallel Slide Gate Valve Design and Sealing Principle   In a parallel slide gate valve, the sealing surfaces at both the inlet and outlet ends of the gate are parallel to the gate centerline. For single-gate configurations, sealing is primarily achieved by the medium pushing a floating gate or floating seat into position. In double-gate configurations, sealing can be accomplished through springs or an expansion mechanism between the gates. Throughout the opening and closing process, the gate and seat sealing surfaces remain in constant contact, ensuring reliable sealing.   Applicable Standards for Parallel Slide Gate Valves   Common standards for parallel slide gate valves include: ● GB/T 23300-2009 – Parallel slide gate valves ● JB/T 5298-2016 – Steel parallel slide gate valves for pipelines ● API 6D – Pipeline valves for petroleum and natural gas industries   Types and Features of Parallel Slide Gate Valves   Parallel slide gate valves are available in single-gate and double-gate configurations. ● Gates may include flow-through holes or be solid. Gates with flow-through holes match the seat inner diameter, facilitating cleaning and drainage of the pipeline. ● Sealing can be configured at the inlet end, outlet end, or at both ends, depending on application requirements.   This design ensures flexibility in sealing arrangements while maintaining reliable oper...

Analysis of Valve Sealing Surface Damage Causes
Analysis of Valve Sealing Surface Damage Causes
2026-01-23

Damage to valve sealing surfaces is typically the result of multiple contributing factors, including material selection, operating conditions, operating practices, and maintenance. The following is a categorized summary of the most common causes:   1. Mechanical Damage ●  Wear: Solid particles in the medium (such as sand or welding slag) erode the sealing surface, resulting in scratches or grooves. ●  Abrasive scuffing: Frictional wear caused by relative movement of the sealing surfaces during valve opening and closing, particularly in metal-to-metal sealing pairs. ●  Impact damage: Deformation of the sealing surface caused by high-velocity fluid impingement or rapid valve opening and closing, leading to impact loading.   2. Chemical Corrosion ● Media corrosion: Acidic, alkaline, or oxidizing media directly attack the sealing surface material, such as metal corrosion caused by H₂S or chloride ions. ● Electrochemical corrosion: When sealing pairs made of dissimilar metals are exposed to an electrolyte, galvanic corrosion may occur due to electrochemical cell formation. ● Erosion–corrosion: The combined effect of corrosive media and high-velocity flow accelerates material loss on the sealing surface.   3. Thermal Damage ●Thermal fatigue:Frequent temperature fluctuations cause repeated thermal expansion and contraction of the sealing surface, leading to cracking or deformation. ●High-temperature oxidation:At elevated temperatures, the sealing surface may undergo oxidation, hardening, or burn-off, as commonly observed in steam valve applications. ●Thermal shock:Sudden exposure to high- or low-temperature media can cause cracking of the sealing surface, such as during rapid condensation or cold media ingress.   4. Improper Installation and Operation ●Installation misalignment: Incorrect valve installation or excessive piping stress can result in uneven loading on the sealing surfaces. ●Over-tightening: Excessive preload applied to the valve stem or bolting may crush or deform the sealing surface, particularly in soft-seated valves or soft sealing gaskets. ●Rough operation: Rapid opening and closing or excessive operating force can cause impact damage to the sealing surfaces.   5. Material Defects ●Improper material selection: The sealing surface material lacks sufficient resistance to process media, high temperature, or wear, such as the use of carbon steel in acidic service. ●Manufacturing defects: Defects in the hardfacing or overlay layer, including porosity, slag inclusions, or improper heat treatment, reduce wear resistance and overall sealing performance.   6. Abnormal Operating Conditions ●Cavitation / flashing: Pressure fluctuations in the fluid generate vapor bubbles that collapse and impact the sealing surface, a phenomenon commonly observed in valves installed downstream of pumps. ●Scaling / deposition: Impurities in the medium accumulate on the sealing surface, impairing tight shutoff, suc...

High Performance Butterfly Valve
加载中...

High Performance Butterfly Valve Lug Type Gear Operated WCB

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    35~60 days Ex Works After Order Confirmation
  • Material:

    Carbon Steel
  • Method of Operation:

    Gear Operated
Inquiry now
Product Detail
The high performance butterfly valve is designed with double eccentric or double offset structure. The valve has cast steel WCB body, stainless steel disc and stem along with RPTFE soft seat.


Quick Detail

Type

Butterfly Valve

Nominal Size

6 Inch

Nominal Pressure

Class 150

Structure

Double Offset, Double Eccentric, Soft Seat

Connection Type

Lug Type

Operation

Gear Operated

Design Code

API 609

Face to Face

ASME B16.10

End Connection

ASME 16.5

Test & Inspection

API 598

Body Material

Cast Steel WCB

Trim Material

CF8M Disc, 17-4PH Stem, RPTFE Seat

Application

Water, Oil, Gas


Dervos Inspection Report

API 609 Butterfly Valve

Lug Type Butterfly Valve

Double Eccentric Butterfly Valve

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
SS High Performance Butterfly Valve
Double Offset High Performance Butterfly Valve CF8M 3 Inch

The double offset high performance butterfly valve, with lever operation and lug body, is designed per API 609. The CF8M body and PTFE seat butterfly valve is more durable in serving the application. Quick Detail Type Butterfly Valve Size 3'' Design Pressure 150LB Construction Double Eccnetric, Soft Seat Connection Type Lug Operation Wrench Operated Design Code API 609 Face to Face ASMEB16.10 End Connection ASMEB16.5 Test & Inspection API 598 Body Material Stainless Steel CF8M Temperature Range -29℃~+150℃ Application Water, Oil, Gas Dimension Class 150 DN mm 40 50 65 80 100 125 150 200 250 300 350 400 NPS in 1 1/2 2 2 1/2 3 4 5 6 8 10 12 14 16 L mm       127 127 127 127 152 203.2 203.2 203.2 203.2 in       5 5 5 5 6 8 8 8 8 L1 mm 38.1 46 50.8 48 54 63.5 57 63.5 71.5 81 92 101.5 in 1.5 1.81 2 1.88 2.13 2.5 2.25 2.5 2.81 3.19 3.62 4 H mm 185 190 220 229 239 252 284 307 337 392 435 481 in 7328 7.48 8.7 9 9.4 9.9 11.2 12 13.3 15.4 17.1 19 D(W) mm 160 160 160 160 160 160 160 200 200 250 250 300 in 6.3 6.3 6.3 6.3 6.3 6.3 6.3 7.9 7.9 9.8 9.8 11.8 Weight  (Kg) mm       12.5 13.5 17 38 72 105 148 182 230 in 8 9 10 10 11 14.5 34.2 66 98 134 168 200 Related Knowledge What is a high performance butterfly valve? A high performance butterfly valve is often designed with double offset and PTFE seat, to handle everything from general applications to viscous and corrosive liquids; corrosive gases and steam. Compared to concentric resilient seat butterfly valve, the disc of the high performance butterfly valve is arranged and positioned off the center of the pipe bore, which could reduce wear and tear to the valve during operation and increase sealing performance. In conlusion, high performance butterfly valve is applicable for higher pressure and temperature applications. Meanwhile, it has longer cycle life and better sealing ability.

150LB high performance double offset butterfly valve WAFER
150LB high performance double offset butterfly valve WAFER

The 3 inch 150LB butterfly valve has a double-offset disc design that allows the disc to move off the seat reducing running torque and seat wear. The Wafer type valve can be driven by a gearbox and handwheel or by electric, pneumatic or hydraulic actuator.

Butterfly Valve
12" 300LB High performance Double Eccentric Butterfly Valve API609

12" 300LB butterfly valve is made according to API 609 standard. The valve body is made of WCB. It has the structural characteristics of high performance and double eccentric. Its operation is turbine operation and packing is graphite.

C95500 Triple Offset Metal Seated Butterfly Valve
DN900 150LB C95500 Triple Offset Metal Seated Butterfly Valve Turbine

DN900 150LB Triple Offset Metal Seated Butterfly Valve is made according to API609 standard. The valve body is made of C95500. It has the structural characteristics of Triple offset, bidirectional equal pressure zero leakage. Its connection mode is FF double flange. And it has Turbine operation mode.

Inverted Pressure Balanced Lubricated Plug Valve
API6D, 2" 600LB Inverted Pressure Balanced Lubricated Plug Valve, RF, WCB, Lever

2" 600LB inverted pressure balanced lubricated plug valve is made according to API 6D standard. The valve body is made of A216 WCB. It has the structural characteristics of inverted pressure balance type, oil sealed. Its connection mode is RF. And it has Lever operation mode.

Non Lubricated Sleeved Plug Valve
Non Lubricated Sleeved Plug Valve 6 Inch Gearbox WCB

The 6 inch sleeved plug valve features in non lubricated design and soft seat. The full port plug valve is made of carbon steel body and PTFE seat as per API 6D, with Class 150 flange connection. Quick Detail Type Plug Valve Size 6'' Design Pressure 150LB Construction Self-Lubricated Type, Sleeved Type, Soft Seat Connection Type RF Flange Operation Gearbox Operation Design Code API 599 Face to Face ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB Temperature Range -29℃~+425℃ Application Water, Oil, Gas Material & Dimension No Part Name Carbon steel to ASTM Stainless steel to ASTM WCB LCB CF8 CF8M CF3 CF3M 1 Body A216 WCB A350 LCB A351 CF8 A351 CF8M A351 CF3 A351 CF3M 2 Bonnet A216 WCB A350 LCB A351 CF8 A351 CF8M A351 CF3 A351 CF3M 3 Plug A105 A182 F304 A351 CF8 A351 CF8M A351 CF3 A351 CF3M 4 Stem A182 F6 A182 F6 A182 F304 A182 F316 A182 F304L A182 F316L 5 Seat Ring PTFE 6 Gasket PTFE or Stainless Steel and Graphite 7 Stem Seat PTFE PTFE PTFE PTFE PTFE PTFE 8 Small spring 17-17PH 9 Small ball A182 F304 or A182 F316 10 Gland A182 F6 A182 F6 A182 F304 A182 F316 A182 F304L A182 F316L 11 Gland Flange A216 WCB A350 LCB A351 CF8 A351 CF8M A351 CF3 A351 CF3M 12 Stem packing PTFE or Graphite 13 Bonnet bolt A193 B7 or A320 L7 or A320 B8 or A193 B8M 14 Bonnet nut A194 2H or A194 4 or A194 8 Class 150 DN mm 15 20 25 40 50 65 80 100 150 200 250 300 NPS in  1/2 3/4 1 1 1/2 2 2 1/2 3 4 6 8 10 12 L(RF) mm 108    117 127 165 178 191 203 229 394 457 533 610 in 4.25 4.6 5 6.5 7 7.5 8 9 15.5 18 21 24 L1(BW) mm 140 152 165 190 216 241 283 305 457 521 559 635 in 5.5 6 6.5 7.48 8.5 9.5 11.13 12 18 20.5 22 25 L2(RTJ) mm 119 129.7 139.7 178 191 203 216 241 406 470 546 622 in 4.69 5.11 5.5 6.9 7.5 8 8.5 905 16 18.5 21.5 24.5 H mm 59 63 75 92 153 165 195 213 272 342 495 580 in 2.3 2.5 2.95 3.74 6.02 6.5 7.68 8.39 10.7 13.5 19.5 22.85 D(W) mm 130 130 160 230 400 400 600 850 1100 1500 350* 350* in 5.1 5.1 6.3 9 15.74 15.74 23.62 33.46 43.3 59 13.8 13.8 Weight  (Kg) RF 2.3 3 4.5 7 15 20 25 40 97 160 240 390 BW 2.0 2.5 3.8 5.8 12 17 21 36 92.8 154 227 365

Gate Valve
2" 900LB Pressure Seal Bonnet Gate Valve F91 ASME B16.34 BW

2”900LB Pressure Seal Bonnet Gate Valve is made according to ASME B16.34 standard. The valve body is made of A182-F91. It has the structural characteristics of PSB, OS&Y,Solid Wedge . Its connection mode is BW sch 80 ASME B16.25. And it has Handwheel operation mode.

Cast Steel Trunnion Mounted Ball Valve
DN300 PN16 Cast Steel Trunnion Mounted Ball Valve ISO17292 CF8M

DN300 PN16 Cast Steel Trunnion Mounted Ball Valve is made according to ISO17292 standard. The valve body is made of A351 CF8M. It has the structural characteristics of Two-Piece, Trunnion Mounted Ball, Full Bore, Fire-safe and Anti-static, Blow-out Proof Stem, Copper-Free Construction, Leakage Rate to EN12266 Rate A (Zero Leakage). Its connection mode is RF. And it has Pneumatically operation mode.

Lift Check Valve
2" 600LB Lift Check Valve RF WCB BS1868 API598

2" 600LB check valve is made according to BS1868 standard. The valve body is made of A216 WCB. It has the structural characteristics of lifting type, bolt cover and body valve seat. Its connection mode is RF.

JIS Globe Valve Flanged
Marine Bronze Globe Valve DN32 5K FF Flanged

The DN32 JIS 5K globe valve is suitable for marine application. The bronze globe valve is handwheel operated with FF flange. Quick Detail Type Marine Globe Valve Size DN 32 Design Pressure 5K Connection Type FF Flange Design Code JIS F7301 Face to Face JIS B2002 Body Material Bronze Trim Material Bronze Application Water, Oil, Gas Purchasing System Late delivery time become a common issue in 2018. However, Dervos keep more than 90% on-time delivery, so how do we achieve that? It owns our purchasing department.  How do we react to a delay crisis? -Visit the factory everyday and supervise on site -Initiate related resources, such as machining workshops and skilled workers to help on expediting production What benefits could we do for you by keeping on-time delivery? -Avoid penalty from end user -Accumulate reputation -Gain client’s trust FAQ 1. Do you have your own foundry or forge shop?  No, but we have an approved list of foundries over the past decade of casting inspections, which can make sure that our castings are of good quality and all the raw materials are traceable.  2. Can you do NDE Capability radiography, MT, UT, LP? Of course, we can do all these tests upon our clients, but there will be additional charge to these tests. 3. What kind of test will you do for each order? After valve assembly, we will do hydraulic test for shell & sealing and air test. Plus, we will do dimension checking (face to face dimension, flange dimension) as per assembly drawing and standards.

DN100 A516 Through Conduit Slab Gate Valve with Drain Valve
DN100 A516 Through Conduit Slab Gate Valve with Drain Valve

The DN100 through conduit slate gate valve is made according to EN558.It is ideal for pipeline applications requiring pigging capability.

Ball Valve
API6D DN50 PN160 Floating Ball Valve Lever A105

DN50 PN160 floating ball valve is made according to API6D standard. The valve body is made of A105. It has the structural characteristics of floating ball and structural length of 235mm. It has a lever operation mode and its connection mode is lens gasket.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact