English

English

Get a Quote
Products
  • Home
  • >
  • Check Valve

  • >
  • Pressure-Seal Bonnet Check Valve, ASTM A105N, 1 Inch, Class 1500

Hot Products

Company News

Three Common Causes of Valve Leakage and Emergency Remedies
Three Common Causes of Valve Leakage and Emergency Remedies
2025-05-28

In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

Pressure-Seal Bonnet Check Valve, ASTM A105N, 1 Inch, Class 1500
加载中...

Pressure-Seal Bonnet Check Valve, ASTM A105N, 1 Inch, Class 1500

High Pressure Check Valve Supplier in China Offers Pressure-Seal Bonnet Check Valve, ASTM A105N, 1 Inch, Class 1500 LB, Forged Steel Lift Check Valve.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    ASTM A105N
  • Method of Operation:

    Non
Inquiry now
Product Detail

Quick Detail: 
Type: Pressure-Seal Bonnet Check Valve.
Material: ASTM A105N.
Valve Size: 1 Inch.
Applicable Pressure Rating: Class 1500 LB.
Temperature Rating: Up to 500℃.
Molding Style: Forging.


Product Range: 
Material: ASTM A105, ASTM A350 LF2, ASTM A182 F5, ASTM A182 F22, ASTM A182 F304, ASTM A182 F304L, ASTM A182 F316, ASTM A182 F316L, ASTM A182 F347, ASTM A182 F321, ASTM A182 F51, ASTM A182 F55, Inconel Alloy, Monel Alloy, Hastelloy Alloy.
Standards: API 608, BS 5351, ASME B16.34/ B16.11/ B1.20.1/ B16.25.
Valve Size: 1/2 - 4 Inch.
Applicable Pressure Rating: Class 150 LB - 1500 LB.
Temperature Rating: Up to 500℃.
Molding Style: Forging.
FORGED STEEL LIFT CHECK VALVE - Pressure-Seal Cover


STANDARD MATERIALS


PART NAMES

MATERIALS

BODY

ASTM A105, ASTM A350 LF2, ASTM A182 F5, ASTM A182 F22, ASTM A182 F304, ASTM A182 F304L, ASTM A182 F316, ASTM A182 F316L, ASTM A182 F347, ASTM A182 F321, ASTM A182 F51, ASTM A182 F55, Inconel Alloy, Monel Alloy, Hastelloy Alloy.

BONNET

ASTM A105, ASTM A350 LF2, ASTM A182 F5, ASTM A182 F22, ASTM A182 F304, ASTM A182 F304L, ASTM A182 F316, ASTM A182 F316L, ASTM A182 F347, ASTM A182 F321, ASTM A182 F51, ASTM A182 F55, Inconel Alloy, Monel Alloy, Hastelloy Alloy.

SEAT

ASTM A105 + HF

DISC

ASTM A276 420

P.S SEAT

304 SS




PRESSURE TEST ( A105 )

CLASS

SHELL (psig)

BACKSEAT(psig)

SEAT(psig)

WATER

WATER

AIR

WATER

1500LB

5575

-

-

4100

2500LB

9275

6800



Design and Manufacture Conform to: API 602, BS 5352, ASME B16.34/ B16.11/ B1.20.1/ B16.25.
Structure Features: 
★ End Connection: Threaded, Socket-Welded or Butt-Welded
★ Pressure-Seal Cover 
★ Reduced Bore / Full Bore

 

About Dervos
Xiamen Dervos Valves Industry Co.,Ltd (stock code 861601), founded in June 2008, is a one-stop industrial valves supplier integrated of R&D, manufacture, resource integration, and trade service. For 12 years, Dervos has been committed to finding solutions for industrial needs and providing professional service for both general and specialized valves.

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Gate Valve
12" 300LB Cast Steel Gate Valve RF WCB Gearbox API600

12" 300LB gate valve is made according to API600 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of bolt cover, rising stem, elastic gate and full flow. Its connection mode is RF. And it has gearbox operation mode.

Concentric Butterfly Valve
Wafer Connection, DN600 PN16 Concentric Butterfly Valve, Body GGG40, EN593

DN600 PN16 concentric butterfly valve is made according to EN593 standard. The valve body is made of GGG40. It has the structural characteristics of center line. Its connection mode is wafer. And it has gear operation mode.

Butterfly Valve
26" 150LB High Performance Double Eccentric Butterfly Valve WCB API609

26" 150LB Butterfly valve is made according to API609 standard. The valve body is made of WCB. It has the structural characteristics of double eccentric, high-performance, bi-directional sealing, fireproof design and anti-corrosion turbine. Its connection mode is lug type. And it has turbine operation mode.

Floating Ball Valve
RF Connection, 4x3" 150LB Two-piece Floating Ball Valve, Body F51, API6D

4x3" 150LB floating ball valve is made according to API 6D standard. The valve body is made of A182 F51. It has the structural characteristics of two piece, floating ball, reduced diameter, anti-fire, anti-static, anti-flying valve stem, bidirectional, with locking device. Its connection mode is RF. And it has lever operation mode.

Floating Ball Valve
DN25 PN40 Floating Ball Valve A105 ISO17292 Lever EN1092-1 B1

DN25 PN40 ball valve is made according to ISO17292 standard. The valve body is made of ASTM A105. It has the structural characteristics of floating ball and full bore. Its connection mode is EN 1092-1 B1. And it has lever operation mode.

Gate Valve
API Cast Steel NPS 8 Class150 Gate Valve OSY Handwheel

Dervos is a proud industrial API 600 cast steel gate valve manufacturer in China. Our stainless steel gate valves, carbon steel gate valves, and alloy steel gate valves are available in all trim configurations.

Butterfly Valve
DN250 PN10 Three Eccentric Butterfly Valve Wafer WCB EN593 Turbine

DN250 PN10 butterfly valve is made according to EN593 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of three eccentricities, bidirectional one to one pressure test. Its connection mode is wafer. And it has turbine operation mode.

SW Connection, 1'' 800LB Forged Steel Gate Valve, Body F304L, API602, Handwheel
SW Connection, 1'' 800LB Forged Steel Gate Valve, Body F304L, API602, Handwheel

1" 800LB forged steel gate valve is made according to API602 standard. The valve body is made of A182-F304L. It has the structural characteristics of bolt cover, rigid gate plate. Its connection mode is SW. And it has hand wheel operation mode.

Strainer
EN13709, RF Connection, DN50 PN40 Y Type Strainer, Body 1.0619

DN50 PN40 Y type strainer is made according to BS EN 13709 standard. The valve body is made of EN 10213 1.0619. It has the structural characteristics of Y-shaped, mesh size: 0.25 mm, without drain plug. Its connection mode is RF.

High Performance Butterfly Valve
High Performance Butterfly Valve Lug Type Gear Operated WCB

The high performance butterfly valve is designed with double eccentric or double offset structure. The valve has cast steel WCB body, stainless steel disc and stem along with RPTFE soft seat. Quick Detail Type Butterfly Valve Nominal Size 6 Inch Nominal Pressure Class 150 Structure Double Offset, Double Eccentric, Soft Seat Connection Type Lug Type Operation Gear Operated Design Code API 609 Face to Face ASME B16.10 End Connection ASME 16.5 Test & Inspection API 598 Body Material Cast Steel WCB Trim Material CF8M Disc, 17-4PH Stem, RPTFE Seat Application Water, Oil, Gas Dervos Inspection Report

Ball Valve
DN300 PN63 Trunnion Mounted Ball Valve A105 API6D Worm Wheel

DN300 PN63 ball valve is made according to API 6D standard. The valve body is made of ASTM A105. It has the structural characteristics of fixed ball, full bore, anti-fire, anti-static, and anti-flying valve stem. Its connection mode is EN1092-1 D. And it has worm wheel operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact