English

English

Get a Quote
Products

Hot Products

Company News

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Wedge Gate Valve Design and Sealing Principle
Wedge Gate Valve Design and Sealing Principle
2026-01-30

In a wedge gate valve, the gate sealing surfaces are wedge-shaped, forming a specific angle relative to the gate centerline. The gate is driven downward by the valve stem to achieve closure. As the stem thrust increases, the normal force acting on the wedge-shaped sealing surfaces also increases, creating a forced sealing effect. This design significantly improves sealing performance under low-pressure conditions.   During opening, the gate sealing surfaces disengage from the seat immediately, which helps reduce wear on the sealing faces and extends the service life of the valve.   Applicable Standards for Wedge Gate Valves   Wedge gate valves are commonly manufactured in accordance with the following standards: ● GB/T 12234-2019 – Steel gate valves with bolted bonnet for petroleum and natural gas industries ● GB/T 12232-2005 – General-purpose flanged cast iron gate valves ● API Standard 600 (2015) – Steel gate valves for petroleum and natural gas industries   Types of Wedge Gate Valve Gates   Wedge gate valves are typically available in three gate configurations:Solid wedge gate, Flexible wedge gate, Double wedge gate.   The flexible wedge gate and double wedge gate rely on controlled deformation of the sealing surfaces to achieve improved contact with the valve seat. This design enhances sealing reliability and effectively prevents gate binding or jamming caused by temperature variations, ensuring smooth operation even under fluctuating thermal conditions.     Parallel Slide Gate Valve Design and Sealing Principle   In a parallel slide gate valve, the sealing surfaces at both the inlet and outlet ends of the gate are parallel to the gate centerline. For single-gate configurations, sealing is primarily achieved by the medium pushing a floating gate or floating seat into position. In double-gate configurations, sealing can be accomplished through springs or an expansion mechanism between the gates. Throughout the opening and closing process, the gate and seat sealing surfaces remain in constant contact, ensuring reliable sealing.   Applicable Standards for Parallel Slide Gate Valves   Common standards for parallel slide gate valves include: ● GB/T 23300-2009 – Parallel slide gate valves ● JB/T 5298-2016 – Steel parallel slide gate valves for pipelines ● API 6D – Pipeline valves for petroleum and natural gas industries   Types and Features of Parallel Slide Gate Valves   Parallel slide gate valves are available in single-gate and double-gate configurations. ● Gates may include flow-through holes or be solid. Gates with flow-through holes match the seat inner diameter, facilitating cleaning and drainage of the pipeline. ● Sealing can be configured at the inlet end, outlet end, or at both ends, depending on application requirements.   This design ensures flexibility in sealing arrangements while maintaining reliable oper...

Analysis of Valve Sealing Surface Damage Causes
Analysis of Valve Sealing Surface Damage Causes
2026-01-23

Damage to valve sealing surfaces is typically the result of multiple contributing factors, including material selection, operating conditions, operating practices, and maintenance. The following is a categorized summary of the most common causes:   1. Mechanical Damage ●  Wear: Solid particles in the medium (such as sand or welding slag) erode the sealing surface, resulting in scratches or grooves. ●  Abrasive scuffing: Frictional wear caused by relative movement of the sealing surfaces during valve opening and closing, particularly in metal-to-metal sealing pairs. ●  Impact damage: Deformation of the sealing surface caused by high-velocity fluid impingement or rapid valve opening and closing, leading to impact loading.   2. Chemical Corrosion ● Media corrosion: Acidic, alkaline, or oxidizing media directly attack the sealing surface material, such as metal corrosion caused by H₂S or chloride ions. ● Electrochemical corrosion: When sealing pairs made of dissimilar metals are exposed to an electrolyte, galvanic corrosion may occur due to electrochemical cell formation. ● Erosion–corrosion: The combined effect of corrosive media and high-velocity flow accelerates material loss on the sealing surface.   3. Thermal Damage ●Thermal fatigue:Frequent temperature fluctuations cause repeated thermal expansion and contraction of the sealing surface, leading to cracking or deformation. ●High-temperature oxidation:At elevated temperatures, the sealing surface may undergo oxidation, hardening, or burn-off, as commonly observed in steam valve applications. ●Thermal shock:Sudden exposure to high- or low-temperature media can cause cracking of the sealing surface, such as during rapid condensation or cold media ingress.   4. Improper Installation and Operation ●Installation misalignment: Incorrect valve installation or excessive piping stress can result in uneven loading on the sealing surfaces. ●Over-tightening: Excessive preload applied to the valve stem or bolting may crush or deform the sealing surface, particularly in soft-seated valves or soft sealing gaskets. ●Rough operation: Rapid opening and closing or excessive operating force can cause impact damage to the sealing surfaces.   5. Material Defects ●Improper material selection: The sealing surface material lacks sufficient resistance to process media, high temperature, or wear, such as the use of carbon steel in acidic service. ●Manufacturing defects: Defects in the hardfacing or overlay layer, including porosity, slag inclusions, or improper heat treatment, reduce wear resistance and overall sealing performance.   6. Abnormal Operating Conditions ●Cavitation / flashing: Pressure fluctuations in the fluid generate vapor bubbles that collapse and impact the sealing surface, a phenomenon commonly observed in valves installed downstream of pumps. ●Scaling / deposition: Impurities in the medium accumulate on the sealing surface, impairing tight shutoff, suc...

Line Blind Valve
加载中...

DN50 CL150 High Temperature Cam-Slide Line Blind Valve Stainless Steel

Line blind valve is a kind of gate valve that cuts off gas medium manually, electrically or pneumatically or hydraulically. It is generally divided into electric blind valve, hydraulic blind valve, closed plug valve and electric open blind valve.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
Inquiry now
Product Detail

Product Description

High temperature cam-slide is a special type of line blind valve, which differs significantly from the regular blind flange valve in its high-temperature resistance capability. Regular line blind valves are typically suitable for media with temperatures between 0°C and 200°C, while high temperature cam-slide line blind valve can withstand usage in high-temperature environments, usually suitable for situations where the temperature is above 200°C and can even withstand temperatures as high as 800°C.

Features

1. It is able to withstand the use in high temperature environments, typically suitable for applications with temperatures higher than 200℃, and can even withstand temperatures as high as 800℃.

2. It features a compact design, allowing it to be used in space-constrained environments.

3. The operation is simple and convenient, requiring only a handle to complete the switch.

4. The valve body is typically made of stainless steel or other corrosion-resistant materials, making it suitable for use in harsh chemical environments.

5. It has good sealing performance, effectively preventing medium leakage.

Technical Drawing

Line Blind Valves Technical Specifications

Description

Standard

Nominal Diameters

1/2” (DN15) to 24” (DN600)

Temperature Range

-20°C to 816°C (14°F - 1500°F)

Pressure Rating

ASME Class 150 to 600 or higher on request

Actuation Method

Manual, Pnuematic, Hydraulic, Electric

Materials

Body: HT Carbon or Stainless Steel

Plate: Stainless Steel

Bellows: Stainless Steel

Line Blind Valves Engineering Standards

ASME Standard

Description

B16.5

Pipe flanges and flanged fittings

B16.34

Valves - flanged, threaded and welding end

B31.1

Power piping

ASME B&PV Code

Description (Boiler & Pressure Vessel Code)

Section II

Material

Section VIII

Rules for Construction of Pressure Vessels

Section IX

Welding and Brazing Qualifications

API Standard

Description

API 598

Valve inspection and testing

API 2217

Guidelines for confined space work in the Petroleum Industry

Others

Description

ISO 9001

Quality management system

NACE MR0175

Sulfide stress cracking and stress corrosion

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
line blind valve
8" Class 150# Line Blind valve ASME DIN ISO Carbon Steel

Line blind valve (eyeglass valve) is a kind of gate valve that cuts off gas medium manually, electrically or pneumatically or hydraulically. It is generally divided into electric blind valve, hydraulic blind valve, closed plug valve and electric open blind valve.

Line Blind Valve
1" - 60" Class 150 - 2500 Line Blind Valve ASME B16.34

Line blinds are utilized in pipeline systems when there is a need for either complete closure or unimpeded flow transition without a significant drop in pressure. The THD (Through-Hole Design) enables swift and seamless adjustments in position. The THD-slide variant boasts a multi-bolt configuration, making it easier to operate with reduced face-to-face dimensions. The inclusion of extra body bolts renders this style particularly well-suited for high-pressure applications.

ASME B16.34 10 150LB Line Blind Valve, RF Connection, Body A105, Turbine
ASME B16.34 10" 150LB Line Blind Valve, RF Connection, Body A105, Turbine Operation

10" 150LB line blind valve is made according to ASME B16.34 standard. The valve body is made of A105. It has the structural characteristics of anti-drip. Its connection mode is RF. And it has turbine operation mode.

Butterfly Valve
DN300 PN10 Concentric Butterfly Valve FF API609

DN300 PN10 butterfly valve is made according to API 609 standard. The valve body is made of GGG40. It has the structural characteristics of centerline and structural length of 78mm. Its connection mode is FF. And it has turbine operation mode.

Gate Valve Handwheel BB OSY
Handwheel Gate Valve BB DN80 PN25 DIN1.0619

The DN80 PN25 gate valve is designed as per EN 1984. With common parts of a valve, like bolted bonnet, outside yoke and handwheel, its body is made of 1.0619 and 13Cr. Other parts including body, bonnet,seat and others are promised to be traceable.   Quick Detail Type Gate Valve Nominal Diameter DN80 NominalPressure PN25 Construction B.B ; OS&Y Connection RF Operation Handwheel Design & Manufacture EN 1984 End to End  DIN 3202 Flange End Dimension EN 1092-1 Test & Inspection  EN 12266-1 Temperature Range -29℃~+425℃ Body Material 1.0619 +STL Wedge Material 1.0619 +13Cr Media W.O.G. Company Brief Introduction  Specializing in valve industry over 10 years, Dervos becomes the leading vendor of gate, globe, check, ball, butterfly, plug valves and strainers. We serve oil and gas user such as LUKOIL, MOL, YPF with local partners.   Dervos show its advantages in: 1. Our partnerships with tens of stable suppliers allow us to provide customers with a wide range of high-quality products at a competitive price. 2. Each order is under strict quality control with inspection reports before delivery. 3. We value delivery time as much as our customers do. With the powerful purchasing system, we follow each order closely to secure on-time delivery. 4. One-stop solutions will be offered in a timely manner

Cast Steel Y Type Strainer
DN80 PN16 Cast Steel Y Type Strainer Body WCB EN12516-1

DN80 PN16 Cast Steel Y Type Strainer is made according to EN12516-1 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of Y-Type, Bolted Bonnet, Mesh 140, Wire Diameter 0.1 mm. Its connection mode is EN1092-1 B. 

8”300LB Cast Steel Y Type Strainer WCB RF
8”300LB Cast Steel Y Type Strainer WCB RF

8”300LB Cast Steel Y Type Strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of Y Type. Its connection mode is RF. 

Wafer Check Valve
API594 3" 150LB Dual Plate Wafer Check Valve API598 LCC

3" 150LB wafer check valve is made according to API594 standard. The valve body is made of A352 LCC + 316. It has the structural characteristics of double plate and built-in type. Its connection mode is wafer type.

Ball Valve
DN25 PN100 Floating Ball Valve A105 Lever EN1092-1 D

DN25 PN100 ball valve is made according to ISO 17292 standard. The valve body is made of ASTM A105. It has the structural characteristics of floating ball, full bore, anti-fire, anti-static, and anti-flying valve stem. Its connection mode is EN1092-1 D. And it has lever operation mode.

Cast Steel Globe Valve
DN65 PN16 Cast Steel Globe Valve Handwheel Operation

1" 150LB Swing Check Valve is made according to ASME B16.34 standard. The valve body is made of A182-F304L. It has the structural characteristics of a swing-open, spigot cover. Its connection mode is RF.

Ball Valve
8" 2500LB Trunnion Mounted Ball Valve API 6D RTJ F51

8" 2500LB ball valve is made according to API 6D standard. The valve body is made of F51. It has the structural characteristics of trunnion mounted ball, full bore. It also has the design of anti-fire, anti-static and anti-flying valve stem. In addition, it also meets NACE MR0175 requirements.

Butterfly Valve
3" 300LB Double Eccentric Butterfly Valve WCB API609 Lug

3" 300LB butterfly valve is made according to API609 standard. The valve body is made of WCB. It has the structural characteristics of double eccentric and high performance. Its connection mode is lug.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact