English

English

Get a Quote
Products

Hot Products

Company News

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

What are the differences between globe valves and gate valves?
What are the differences between globe valves and gate valves?
2025-12-12

In industrial piping systems, globe valves and gate valves are two of the most commonly used shutdown valves. Although both are designed for starting and stopping fluid flow, they differ significantly in structural design, operating principles, application scenarios, and overall performance. Understanding these differences helps engineers make informed selections that ensure system efficiency, reliability, and cost-effectiveness.   I. Key Differences in Structure and Operating Principles   1. Different opening and closing mechanisms Globe Valve: The disc moves up and down along a path perpendicular to the flow direction. Shutoff is achieved when the disc and seat sealing surfaces come into full contact. Gate Valve: The gate moves vertically in a manner similar to a “gate” that is either fully open or fully closed, with sealing achieved through surface compression.  This means that globe valves are suitable for precise throttling, while gate valves are mainly used for full open or full shut service.   2. Flow path design differences A globe valve has an S-shaped flow path that forces the medium to change direction, resulting in higher flow resistance. A gate valve features a straight-through flow path with minimal resistance and low pressure drop, making it better suited for long-distance transmission.   II. Differences in Application Scenarios   1. Throttling vs. On/Off Service Globe valves can be used for throttling and flow regulation, making them suitable for applications requiring high sealing performance and precise flow control, such as steam, cooling water, and various process media.   Gate valves are not suitable for throttling, as operating them in a partially open position may cause gate vibration, damage to the sealing surfaces, and fluid-induced impact. Gate valves are ideal for large-diameter pipelines where low flow resistance is required and switching frequency is relatively low, including oil transportation, water supply and drainage, and power plant systems.   2. Size range and installation space Globe valves are generally used in small to medium sizes (more common below DN50). Their body structure is heavier and requires more installation space. Gate valves are suitable for medium to large sizes. Due to their simpler design, they offer a cost advantage in larger dimensions.   III. Sealing Performance and Pressure Ratings   1. Differences in sealing surface design The globe valve features a tapered sealing surface, which achieves tight shutoff through axial compression, making it easier to obtain reliable sealing performance. The gate valve uses either parallel or wedge-type sealing surfaces. Its sealing effectiveness depends largely on the pressure applied by the gate and is more influenced by the system’s medium pressure.   2. Pressure and temperature adaptability Both valve types are suitable for medium- to high-pressure and high-temperature applications....

Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
2025-12-05

Butterfly valves are widely used in industrial piping systems due to their compact structure, lightweight design, and quick operation. They are commonly applied in water treatment, chemical, power, oil, and gas industries. However, when dealing with industrial standards across different countries and regions, selecting a butterfly valve that meets the relevant specifications is crucial. This article provides a detailed analysis of butterfly valve design and selection requirements based on three key standards: API 609, ISO 5752, and GB/T 12238.   1. API 609 — American Petroleum Institute Standard   API 609 is the American Petroleum Institute (API) standard for metal-seated butterfly valves, primarily used in the oil, gas, and chemical industries. The standard defines valve structure, materials, dimensions, and pressure ratings to ensure reliable performance under high temperature, high pressure, and corrosive media conditions.   Key points include: ● Pressure Ratings: Covers Class 150 to 1500, accommodating various service conditions. ● Body and Disc Design: Metal-to-metal sealing requires precise alignment between disc and seat to prevent leakage under high temperature or high pressure. ● Testing and Inspection: Includes shell tests, seat leakage tests, and operational performance checks to ensure valve safety and reliability.   For high-temperature steam or high-pressure oil and gas pipelines, selecting a butterfly valve compliant with API 609 can significantly reduce leakage risk and extend equipment lifespan.   2. ISO 5752 — International Standard Organization Standard   ISO 5752 is the International Organization for Standardization (ISO) standard that specifies end dimensions and flange connection sizes for valves. It defines the face-to-face dimensions, flange sizes, and connection methods for butterfly valves, providing a consistent interface specification for industrial users worldwide.   Key points include: ● Face-to-Face Dimensions: Specifies valve lengths for different nominal diameters to ensure compatibility with piping systems. ● Flange Dimensions: Ensures valves match international standard pipe fittings, such as ANSI or DIN flanges. ● Interchangeability: Butterfly valves designed according to ISO 5752 can be replaced or serviced globally without redesigning the pipeline interface.   ISO 5752 is particularly suitable for multinational engineering projects, ensuring the universality of butterfly valves across different plants and systems.   3. JB/T8527 — Chinese National Standard   JB/T8527 is the Chinese national standard specifying the dimensions, structure, and testing requirements for metal hard-seal butterfly valves. It is widely applied in domestic industrial projects such as water conservancy, power, and petrochemical industries, serving as an important reference for procurement and acceptance.   Key ...

DN100 A516 Through Conduit Slab Gate Valve with Drain Valve
加载中...

DN100 A516 Through Conduit Slab Gate Valve with Drain Valve

The DN100 through conduit slate gate valve is made according to EN558.It is ideal for pipeline applications requiring pigging capability.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    A516
  • Method of Operation:

    Handwheel
Inquiry now
Product Detail

Quick Detail

Type

Gate Valve

Nominal Diameter

DN100

NominalPressure

PN63

Construction

Slab type;Through Conduit

Connection

D Type Flange

Design & Manufacture

EN558

End to End Dimension

EN558.1

Flange Dimension

EN1092-1 D

Test & Inspection 

API598

Body Material

A516

Disc Material

A516

Seat Material

A105+ENP+RPTFE

Temp. Range

-29~121℃

Media

Water, Steam, Oil, etc

 

Through conduit plate gate valves are the oil and gas industry's choice for liquid and gas applications where reliable, tight shutoff is required to prevent leakage and minimize loss of process contamination.

 

Features

-Fire-safe Level:Mk

-Temp. Level :T3,

-Leakage Level:EN12266A

-Back Seat

-Primary metal-secondary soft seat

-Changeable packing stuff



Technical Drawing


Witness Tests


Packing


Special Tests

Besides general tests we will do (hydraulic and air test), we could also do tensile strength test, metallographic test,fugitive emission test, andNDE test (UT,RT,PT,MT) upon customers’ specific requests.



Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Carbon Steel Slab Gate Valve
Through Conduit Slab Gate Valve DN200 PN64 Flanged

The through conduit slab gate valve, designed as per DIN standard, has the diversion hole for pipeline cleaning. The PN64 parallel disc gate valve is made of carbon steel with RF flange and handwheel. Quick Detail Type Parallel Slab Gate Valve Nominal Diameter DN 200 Nominal Pressure PN 64 Construction Parallel Slabe Gate Valve, With Diversion Hole, Bolted Bonnet, Resilient Seat Connection Flange Operation Handwheel Operation Body Material Carbon Steel Medium Water, Oil and Gas Origin China Design Feature 1.Parellel disc 2.Soft seat and metal seat for choices 3.Full bore design for pigging and less pressure drop 4.Firesafe design 5.Self relieving function 6.Grease fitting for seat and stem 7.Double block and bleed capability 8.With vent and drain port 9.Tight sealing performance  Material Part Name Material Body & Bonnet A216 WCB, CF8, CF8M, CF3, CF3M Wedge Alloy Steel (face harden treated), Stainless Steel (with Co overlay) Stem Alloy Steel (face erosion-resistant treated) Seat Alloy Steel (face harden treated, beset F plastic), Steel (with Co overlay, best F plastic) Packing PTFE O-Ring NBR, FEP Sealing Grease  

Through Conduit Gate Valve
Through Conduit Expanding Gate Valve 18 Inch 600LB API6D

The API 6D through conduit gate valve is designed with double expanding wedges, metal to metal seat and diversion hole for pigging. The valve has good performance on sealing, less flow resistance and is suitable for application with some solids or particles. Quick Detail   Type Gate Valve Size 18'' Design Pressure ANSI 600 Construction Double Expanding Wedges, Fully Metal Seat, With Diversion Hole ConnectionType RTJ Flange OperationType Gearbox Operated Body Material WCB WedgeMaterial A105+STL+ENP StemMaterial 17-4PH SeatMaterial A105+STL+ENP Design Code API 6D Face to Face Dimension ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Medium Water, Oil and Gas Origin China

Flat Gate Valves
DN250 PN100 High-Pressure Flat Gate Valve with Drain Valve

It is a Carbon Steel full bore flat gatevalve with parallel wedge, DN250 PN100, made from LCC, one kind of low-temp carbon steel, which makes this valve capable to handle extreme working conditions.

Gate Valve
API 6D Through Conduit Gate Valve Soft Seated 20 Inch 600LB

The API 6D through conduit gate valve is designed with 600 LB flange and gearbox connection. Made of carbon steel WCB, the 20 inch gate valve has soft seat design without diversion hole.

Gate Valve
10''/ 12''/ 24'' 600LB Flat Gate Valve API6D RF

10’’ ~ 24’’ 600LB gate valve is made according to API 6D standard. The valve body is made of A516 Gr70. It has the structural characteristics of parallel gate. The operation mode is gear operation.

Flat Gate Valve
3" 1500LB Flat Gate Valve, RTJ Connection, Body A995 4A, API6D

3" 1500LB flat gate valve is made according to API6D standard. The valve body is made of ASTM A995 4A. It has the structural characteristics of BB, OS&Y, with diversion holes. Its connection mode is RTJ. And it has hand wheel operation mode.

Strainer
EN13709, RF Connection, DN50 PN40 Y Type Strainer, Body 1.0619

DN50 PN40 Y type strainer is made according to BS EN 13709 standard. The valve body is made of EN 10213 1.0619. It has the structural characteristics of Y-shaped, mesh size: 0.25 mm, without drain plug. Its connection mode is RF.

Check Valve
DN100 PN16 Lift Check Valve WCB EN12516-1 EN1092-1 B

DN100 PN16 check valve is made according to EN12516-1 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of lifting type with spring. Its connection mode is EN1092-1 B.

Forged Steel Globe Valve
ASTM A182 F316 1-1/2”300LB Forged Steel Gate Valve RF H.W.

1-1/2" 300LB Forged Steel Gate Valve is made according to API 602 standard. The valve body is made of ASTM A182 F316. It has the structural characteristics of BB,OS&Y. Its connection mode is RF. And it has hand wheel operation mode.

JIS 2 Piece Floating Ball Valve RF×NPT 25A 16K
JIS 2 Piece Floating Ball Valve RF×NPT 25A 16K

This ball valve, designed as per ASME B16.34, features two different connection ways--one side for RF and the other side NPT. The valve with floating ball, PTFE seat, SCS13 body and other features has an excellent sealing performance.

Wafer Check Valve
3" 150LB Dual Plate Wafer Check Valve API594 A995 5A

3" 150LB wafer check valve is made according to API594 standard. The valve body is made of A995 5A. It has the structural characteristics of built-in type and dual plate. Its connection mode is wafer type.

Lift Check Valve
2" 600LB Lift Check Valve RF WCB BS1868 API598

2" 600LB check valve is made according to BS1868 standard. The valve body is made of A216 WCB. It has the structural characteristics of lifting type, bolt cover and body valve seat. Its connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact