English

English

Get a Quote
Products

Hot Products

Company News

Check Valve Maintenance: When to Replace and How to Fix Common Issues
Check Valve Maintenance: When to Replace and How to Fix Common Issues
2025-11-06

A check valve is a critical device that prevents backflow, widely used in water treatment, oil & gas pipelines, chemical processing, and steam systems.   After long-term operation, check valves may experience issues such as leakage, vibration noise, or sticking. If not addressed promptly, these problems can reduce system efficiency and even cause equipment damage or safety hazards.   So, how can you tell if a check valve needs replacement? Which faults can be repaired, and which require a full replacement? This article provides a systematic guide.   1. Basic Operating Principle of Check Valves   The primary function of a check valve is to automatically prevent backflow. When fluid flows in the intended direction, the valve disc is pushed open by pressure; when flow reverses, the disc closes automatically, using either its own weight or a spring, preventing backflow.   Common types include: Lift Check Valve Swing Check Valve Dual Plate Wafer Check Valve Ball Check Valve    Although their designs vary, the key criteria for determining whether a check valve needs replacement remain the same: sealing performance, operational smoothness, and structural integrity.   2. How to Determine if a Check Valve Needs Replacement   Visible Leakage (Internal or External) If fluid continues to flow backward when the valve is closed, it indicates significant wear or deformation of the sealing surfaces, preventing an effective seal. If the leakage exceeds system tolerances and cannot be corrected by cleaning or resurfacing, the valve or its sealing components should be replaced.   Sticking or Inflexible Valve Disc After long-term operation, the valve stem, guides, or disc may become stuck due to scaling, corrosion, or debris. If cleaning, descaling, or lubrication fails to restore smooth operation, replacement is recommended.   Excessive Noise or Vibration Frequent opening and closing or rapid disc rebound can cause vibration or knocking sounds. This is usually due to spring failure, loose valve components, or worn guides. Persistent or frequent noise should trigger inspection of the valve’s structural integrity and consideration for replacement.   Corroded or Cracked Valve Body or Cover Exposure to acidic, alkaline, or high-temperature fluids can corrode or crack the valve body, compromising structural strength and posing safety risks. Such damage cannot be repaired and requires full valve replacement.   Frequent Backflow or Abnormal System Pressure Fluctuations Poor sealing or delayed valve response can cause system pressure variations, including water hammer. If repeated adjustments do not resolve the issue, it indicates aging of the internal spring or disc mechanism, necessitating timely replacement.   3. Common Fault Diagnosis and Solutions   Fault: Valve fails to close completely, causing backflow Cause: Worn sealing surfaces, deformed disc, or trapped debris Solution: Remove ...

What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
2025-10-31

If you’ve ever hesitated between choosing a flanged or threaded globe valve, you’re not alone. Globe valves are common shut-off valves widely used in industries such as oil and gas, chemical processing, power generation, shipbuilding, and water treatment. While both connection types can control fluid flow, they differ significantly in terms of installation method, sealing performance, and suitable applications. This article will provide a systematic comparison of flanged and threaded globe valves from the perspectives of structure, performance, and application.   I. Fundamental Difference in Connection Methods   1.Flanged Globe Valve A flanged globe valve connects to the pipeline through flanges, with bolts tightening the flange faces together to ensure a secure seal.This connection type offers excellent strength and reliability, making it ideal for medium to high-pressure, large-diameter, and frequently operated systems.In industrial applications, typical sizes range from DN50 to DN300, and flange dimensions generally follow international standards such as ANSI, DIN, or JIS.   2. Threaded Globe ValveA threaded globe valve typically uses either internal (NPT/BSP) or external threads to connect to the pipeline, relying on the threads themselves for sealing.This compact and lightweight structure allows for easy installation and is mainly used in small-diameter (usually ≤ DN50) and low-pressure systems, including residential pipelines.Because it does not require welding or flange gaskets, a threaded valve is more cost-effective in both installation and maintenance.     II. Comparison of Sealing Performance and Maintenance   Flanged Globe ValveFlanged globe valves typically use metal or flexible graphite gaskets for sealing, offering excellent resistance to high temperature, high pressure, and corrosion.During long-term operation, maintenance or valve replacement is straightforward—simply loosen the flange bolts to disassemble the valve.   Threaded Globe ValveThe sealing of a threaded globe valve mainly depends on the thread engagement and sealing materials such as PTFE tape or sealing paste.However, repeated disassembly can damage the threads and increase the risk of leakage.For this reason, threaded globe valves are better suited for fixed installations, clean fluids, and low-pressure systems.     III. Structural Dimensions and Installation Requirements   Flanged Globe ValveFlanged globe valves are larger in size and require more installation space, but they provide superior vibration resistance and pressure tolerance.They are commonly used in industrial piping networks or pump station systems where sufficient structural support is available.   Threaded Globe ValveThreaded globe valves feature a compact design, making them ideal for confined spaces or lightweight piping systems such as laboratories, compressor inlets and outlets, and domestic water supply lines.However, thr...

Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
2025-10-24

The global industrial valve market is undergoing a quiet yet significant transformation. Growth is no longer driven mainly by new construction projects — instead, it’s increasingly fueled by the replacement and modernization of aging equipment and infrastructure. From petrochemical plants to municipal water systems and natural gas pipelines, valve upgrades have become a key priority across industries.   Aging Equipment Drives Rising Valve Replacement Demand   In many industrial facilities, valves—though seemingly durable—gradually suffer from seal wear, sluggish operation, and leakage after years of service. For plants operating over a decade, valve degradation has become a major factor affecting safety and efficiency.   With stronger focus on maintenance, process safety, and energy efficiency, end users in oil & gas, power, and water treatment sectors are accelerating valve replacement and upgrade projects. This trend aligns with a global shift toward predictive maintenance and sustainable operations, increasing demand for ball valves, gate valves, and control valves.   Market research from Mordor Intelligence and others shows a shorter valve replacement cycle due to rising maintenance costs and downtime risks. Stricter environmental and safety standards are also pushing faster modernization worldwide. In the U.S., for example, the water sector—with pipelines averaging over 40 years old—is investing in large-scale valve renewal programs to reduce leakage and unplanned shutdowns. Similar initiatives are emerging across Europe and Asia.   Infrastructure Investment Fuels Market Expansion   Beyond replacements, ongoing infrastructure investment continues to drive valve demand globally. Asia’s rapid industrial growth and the Middle East’s refining and petrochemical expansion have led to increased valve procurement.   According to GMI Insights, the global industrial valve market reached USD 75.9 billion in 2024 and is projected to hit USD 142.6 billion by 2034 (CAGR: 6.6%). Precedence Research forecasts even higher potential—up to 12.5% CAGR.   This growth is backed by large-scale upgrades in urban water networks, wastewater treatment plants, natural gas pipelines, and energy transition projects such as hydrogen and carbon capture systems, all requiring next-generation high-performance valves.   Valve Replacement Becomes a Smart Technology Upgrade   Modern valves are evolving beyond mechanical parts. With smart manufacturing and the Industrial Internet of Things (IIoT), today’s valves feature sensors, smart actuators, and remote monitoring. Engineers can now track performance in real time and conduct predictive maintenance, reducing unexpected downtime.   Advanced materials like corrosion-resistant alloys, cryogenic steels, and special polymers are extending service life and reliability—especially in harsh environments. For indu...

10 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear
加载中...

10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

10" 300LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 C5. It has the structural characteristics of bolt cover, elastic gate, rising stem, OS&Y, full bore and body valve seat. Its connection mode is RF (125~250AARH). And it has bevel gear operation mode.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    ASTM A217 C5
  • Method of Operation:

    Bevel Gear
Inquiry now
Product Detail

Product Description

Type

Gate Valve

Size

10"

Pressure

300LB

Connection

RF (125~250AARH)

Operation

Bevel Gear

Body Material

ASTM A217 C5

Design Norm

API 600

Face to Face Dimension

ASME B16.10

Flange Dimension

ASME B16.5

Test & Inspection Code

API 598

Temperature

-29 ~ 650°C

Applicable Medium

Water, Oil and Gas

Features

1. Compact structure, reasonable design, smooth channel, and low flow resistance coefficient;

2. Long service life, widely used in pipelines of various systems in petroleum, chemical, hydraulic, and thermal power plants.

Technical Drawing

10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

Dimension Checking

10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

Pressure Testing

10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

Painting

10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

Packing

10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

Inspection report

10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y
API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y

10’’ 300LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 C5 + STL. It has the structural characteristics of rising stem and bolt cover. The gate valve connected by flange has the operation mode of hand wheel.

6 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel
6" 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel

6" 150LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 WC6. It has the structural characteristics of bolt cover, elastic gate, rising stem, OS&Y, full bore, body valve seat. Its connection mode is RF (125~250AARH). And it has hand wheel operation mode.

Alloy Steel Gate Valve
2" 600LB Alloy Steel Gate Valve WC6 BW SCH 80 API 600

2" 600LB Alloy Steel Gate Valve is made according to API 600 standard. The valve body is made of ASTM A217 WC6. It has the structural characteristics of Body cover bolt. Its connection mode is BW SCH 80. And it has Non lifting handwheel operation mode.

300LB Alloy Steel Globe Valve
API623 3" 300LB Alloy Steel Globe Valve A217 WC6 RF H.W.

3" 300LB Alloy Steel Globe Valve is made according to API623 standard. The valve body is made of A217 WC6. It has the structural characteristics of through way type and structural length of 317.5mm. Its connection mode is RF. And it has hand wheel operation mode.

Strainer
6" 300LB Y Type Strainer RF WCB ASME B16.34

6" 300LB Y type strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of Y-shaped and bolt cover. Its connection mode is RF.

Cast Steel Gate Valve
6" 300LB Cast Steel Gate Valve BW API600 Handwheel LCB

6" 300LB gate valve is made according to API 600 standard. The valve body is made of A352 LCB. It has the structural characteristics of bolt cover, rising stem, OS&Y. Its connection mode is BW (SCH40). And it has handwheel operation mode.

Gate Valve
DN15 PN40 F53 Forged Steel Gate Valve HandWheel

DN15 PN40 gate valve is made according to EN ISO 15761 standard. The valve body is made of ASTM A182 F53. It has the structural characteristics of rigid wedge, full bore, rising stem, bolted cover. Its connection mode is EN1092-1 B1. And it has hand wheel operation mode.

Butterfly Valve
DN300 PN25 Triple Eccentric Butterfly Valve WCB Turbine

DN300 PN25 Triple Eccentric Butterfly Valve is made according to EN 593 standard. The valve body is made of A216 WCB. It has the structural characteristics of Triple offset, multi-layer sealing and structural length of 83 mm. Its connection mode is LUG. And it has turbine operation mode.

handwheel operated globe valve
Cast Steel A350 Globe Valve BS1873 BW 8 Inch 300LB

The cast steel globe valve is designed as per BS1873. With Body Bonnet, outside screw and yoke, handwheel, the 8 inch valve, the valve is suitable for common work condition.

Gate Valve
3/4" 800LB Forged Steel Gate Valve SW*NPT F5 API602

3/4" 800LB gate valve is made according to API 602 standard. The valve body is made of A182-F5. It has the structural characteristics of rigid wedge, welded valve cover. Its connection mode is SW*NPT. And it has hand wheel operation mode.

Extended Bonnet Gate Valve
Extended Stem Cryogenic Gate Valve SW 1 Inch 1500LB

Made of stainless steel, the cryogenic gate valve has extended bonnet, reduced bore, non-rising handwheel, socket weld connection, complying with API 602. Quick Detail Type Gate Valve Size 1'' Design Pressure ANSI 1500 Construction Extended Stem, Bolted Bonnet, Solid Wedge ConnectionType Socket Weld (SW) OperationType Handwheel Operation Body Material A182 F316L TrimMaterial SS316L Design Code ASME B16.34 Face to Face ASME B16.10 End Connection ASME B16.11 Medium Water, Oil and Gas Origin China Available Modifications for Dervos Valves -Design Pressure -Nominal Diameter -Body Material & Trim Material -Material & Type for Packing and Gasket -Valve Operation Type -Modifications of End Connection -Available Extended Stem or Bonnet -Available By-Pass Valve -Customized Coatings & Packaging Related Knowledge Why do we use extended stem for cryogenic valves? The cryogenic valves are mainly used in low temperature liquid media, like liquefied natural gas and petroleum products. The reasons why we use extended stem for cryogenic valves are as below: 1.To maintain the temperature of stem packing in a proper level, since the very low temperature will influnce the sealing function of stem pakcing. 2.To prevent the heat outside from entering the valve and cause energy loss to the application 3.The long stem structure facilitates the quick replacement of the valve's main part through the valve cover. 4.To prevent the parts (like handwheel) over stem from freezing

ECOFUEL Turns Waste into Diesel with DERVOS Valve Solutions
ECOFUEL Turns Waste into Diesel with DERVOS Valve Solutions

In 2017, DERVOS contributed to an innovative environmental initiative led by ECOFUEL, an emerging canadian player in clean technology. This groundbreaking project aimed to produce sustainable diesel from solid waste, setting a precedent in green energy solutions. DERVOS is proud to have provided 136 sets of premium valves to support this pioneering effort.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact