English

English

Get a Quote
Products

Hot Products

Company News

Wedge Gate Valve Design and Sealing Principle
Wedge Gate Valve Design and Sealing Principle
2026-01-30

In a wedge gate valve, the gate sealing surfaces are wedge-shaped, forming a specific angle relative to the gate centerline. The gate is driven downward by the valve stem to achieve closure. As the stem thrust increases, the normal force acting on the wedge-shaped sealing surfaces also increases, creating a forced sealing effect. This design significantly improves sealing performance under low-pressure conditions.   During opening, the gate sealing surfaces disengage from the seat immediately, which helps reduce wear on the sealing faces and extends the service life of the valve.   Applicable Standards for Wedge Gate Valves   Wedge gate valves are commonly manufactured in accordance with the following standards: ● GB/T 12234-2019 – Steel gate valves with bolted bonnet for petroleum and natural gas industries ● GB/T 12232-2005 – General-purpose flanged cast iron gate valves ● API Standard 600 (2015) – Steel gate valves for petroleum and natural gas industries   Types of Wedge Gate Valve Gates   Wedge gate valves are typically available in three gate configurations:Solid wedge gate, Flexible wedge gate, Double wedge gate.   The flexible wedge gate and double wedge gate rely on controlled deformation of the sealing surfaces to achieve improved contact with the valve seat. This design enhances sealing reliability and effectively prevents gate binding or jamming caused by temperature variations, ensuring smooth operation even under fluctuating thermal conditions.     Parallel Slide Gate Valve Design and Sealing Principle   In a parallel slide gate valve, the sealing surfaces at both the inlet and outlet ends of the gate are parallel to the gate centerline. For single-gate configurations, sealing is primarily achieved by the medium pushing a floating gate or floating seat into position. In double-gate configurations, sealing can be accomplished through springs or an expansion mechanism between the gates. Throughout the opening and closing process, the gate and seat sealing surfaces remain in constant contact, ensuring reliable sealing.   Applicable Standards for Parallel Slide Gate Valves   Common standards for parallel slide gate valves include: ● GB/T 23300-2009 – Parallel slide gate valves ● JB/T 5298-2016 – Steel parallel slide gate valves for pipelines ● API 6D – Pipeline valves for petroleum and natural gas industries   Types and Features of Parallel Slide Gate Valves   Parallel slide gate valves are available in single-gate and double-gate configurations. ● Gates may include flow-through holes or be solid. Gates with flow-through holes match the seat inner diameter, facilitating cleaning and drainage of the pipeline. ● Sealing can be configured at the inlet end, outlet end, or at both ends, depending on application requirements.   This design ensures flexibility in sealing arrangements while maintaining reliable oper...

Analysis of Valve Sealing Surface Damage Causes
Analysis of Valve Sealing Surface Damage Causes
2026-01-23

Damage to valve sealing surfaces is typically the result of multiple contributing factors, including material selection, operating conditions, operating practices, and maintenance. The following is a categorized summary of the most common causes:   1. Mechanical Damage ●  Wear: Solid particles in the medium (such as sand or welding slag) erode the sealing surface, resulting in scratches or grooves. ●  Abrasive scuffing: Frictional wear caused by relative movement of the sealing surfaces during valve opening and closing, particularly in metal-to-metal sealing pairs. ●  Impact damage: Deformation of the sealing surface caused by high-velocity fluid impingement or rapid valve opening and closing, leading to impact loading.   2. Chemical Corrosion ● Media corrosion: Acidic, alkaline, or oxidizing media directly attack the sealing surface material, such as metal corrosion caused by H₂S or chloride ions. ● Electrochemical corrosion: When sealing pairs made of dissimilar metals are exposed to an electrolyte, galvanic corrosion may occur due to electrochemical cell formation. ● Erosion–corrosion: The combined effect of corrosive media and high-velocity flow accelerates material loss on the sealing surface.   3. Thermal Damage ●Thermal fatigue:Frequent temperature fluctuations cause repeated thermal expansion and contraction of the sealing surface, leading to cracking or deformation. ●High-temperature oxidation:At elevated temperatures, the sealing surface may undergo oxidation, hardening, or burn-off, as commonly observed in steam valve applications. ●Thermal shock:Sudden exposure to high- or low-temperature media can cause cracking of the sealing surface, such as during rapid condensation or cold media ingress.   4. Improper Installation and Operation ●Installation misalignment: Incorrect valve installation or excessive piping stress can result in uneven loading on the sealing surfaces. ●Over-tightening: Excessive preload applied to the valve stem or bolting may crush or deform the sealing surface, particularly in soft-seated valves or soft sealing gaskets. ●Rough operation: Rapid opening and closing or excessive operating force can cause impact damage to the sealing surfaces.   5. Material Defects ●Improper material selection: The sealing surface material lacks sufficient resistance to process media, high temperature, or wear, such as the use of carbon steel in acidic service. ●Manufacturing defects: Defects in the hardfacing or overlay layer, including porosity, slag inclusions, or improper heat treatment, reduce wear resistance and overall sealing performance.   6. Abnormal Operating Conditions ●Cavitation / flashing: Pressure fluctuations in the fluid generate vapor bubbles that collapse and impact the sealing surface, a phenomenon commonly observed in valves installed downstream of pumps. ●Scaling / deposition: Impurities in the medium accumulate on the sealing surface, impairing tight shutoff, suc...

Dervos 2025 Team Building Trip in Guangxi Journey Across Mountains and Seas
Dervos 2025 Team Building Trip in Guangxi Journey Across Mountains and Seas
2026-01-16

In 2025, Dervos organized its annual team trip, a five-day journey to Chongzuo, Weizhou Island, and Nanning in Guangxi Province. The trip aimed to provide relaxation and strengthen team communication, offering a well-paced and content-rich experience that combined natural landscapes with local cultural immersion. In Chongzuo, the team focused on nature sightseeing. Bamboo rafting tours allowed close observation of the local ecology and offered opportunities to see rare species such as the white-headed leaf monkey. The group also visited Detian Waterfall, experiencing its scale and flow firsthand. The overall itinerary was designed with a relaxed pace, providing ample time for rest and team bonding. Next, the team traveled to Weizhou Island. The volcanic landforms and coastal scenery added a unique visual dimension to the journey. Beyond sightseeing, participants engaged in local agricultural activities, including dragon fruit picking and banana harvesting, gaining insight into local lifestyles. The team also visited several beaches, fully appreciating the island environment. The final stop was Nanning. Team members explored the night market, sampled local specialties, and experienced the city’s daily life, bringing the Guangxi trip to a relaxed conclusion. This annual trip allowed the Dervos team to foster more natural communication and connection outside of work, recharging energy for the months ahead. Dervos remains committed to its guiding principle: I come, I see, I conquer!

Tilting Disc Check Valve
加载中...

10" 150LB Tilting Disc Check Valve WCB Wafer API6D

10" 150LB tilting disc check valve is made according to API 6D standard. The valve body is made of A216 WCB+SS316. It has the structural characteristics of swash plate type. Its connection mode is wafer.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    A216 WCB+SS316
Inquiry now
Product Detail

Product Description

Type

Check Valve

Size

10"

Pressure

150LB

Connection

Wafer

Body Material

A216 WCB+SS316

Design Norm

API 6D

Face to Face Dimensions

API 6D

End Flange Dimensions

ANSI B16.5

Test & Inspection Code

API 598

Temperature

-29 ~ 400°C

Applicable Medium

Water, Oil and Gas

Features

1. Effectively preventing media backflow and protecting the safe operation of pipeline systems and equipment;

2. When the direction of medium flow changes, the valve disc can quickly close to prevent medium backflow and maintain the normal flow direction of the pipeline system.

Technical Drawing

Dimension Checking

Pressure Testing

Nameplate & Packing

Inspection report



Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
2500LB High Pressure Non Return Valve
Pressure Seal Tilting Disc Check Valve 12 Inch 2500LB

The 12 inch high pressure check valve is designed with pressure seal bonnet, RTJ flange, tilting disc, made of carbon steel WCB body and hard face sealing. Quick Detail Type Check Valve Size 12'' DesignPressure 2500LB Construction Pressure Seal Bonnet, Tilting Disc Type Connection RTJ Flange Design & Manufacture ASME B16.34 End to End ASME B16.10 Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB Trim Material 13CR+STL Temp Range -29℃~+350℃ Media W.O.G. Product Range Body Material Range: WCB, WCC, WC1,CF8M, CF8, CF3, CF3M, LCB, LCC Size Range: 2”~60” (DN50~DN1500) End Connection Type: Flange End, Weld End Design Pressure Range: 150lbs~600lbs  Temp Range: -46℃~ +425℃ Related Knowledge What is a tilting disc check valve? The disc of a tilting disc check valve has a pivot point at the center of it. It is desinged to overcome weaknesses of general type swing check valve. Compared to swing type check valve, the tilting check valve could remain fully open and steady at lower flow rates. That is to say, the swing check valve needs a high velocity of fluid to keep disc open and a higher cracking pressure. For low pressure situation, the pressure drop of a tilting disc check valve is much lower than the swing type. But at a higher flow rate, the tilting check valve has higher pressure drop than swing type.

Check Valve
DN250 PN10 Tilting Disc Check Valve RF WCB API598

DN250 PN10 check valve body is made of A216 WCB+STL. It has the structural characteristics of heavy hammer on both sides and flange type. Its connection mode is RF.

Tilting Disc Check Valve
RF Connection, 3" 150LB Tilting Disc Check Valve, Body CF8M, API6D

3" 150LB tilting disc check valve is made according to API 6D & BS1868 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of tilting disc type, bolt cover. Its connection mode is RF.

DIN Single Plate WAFER Check Valve DN80 PN40
DIN Single Plate WAFER Check Valve DN80 PN40

The single-disc check valve, made of CF8, has excellent resistance to corrosion. Designed in accordance with API594, the valve is of a WAFER type.

2 150LB Y Strainer LCB ASME B16.34 RF
2" 150LB Y Strainer LCB ASME B16.34 RF

2" 150LB Y Strainer is made according to ASME B16.34 standard. The valve body is made of LCB. It has the structural characteristics of Y-Type, Double Mesh Screen, Mesh Size 1/16", Hole Pitch 3/32". Its connection mode is RF. 

Forged Steel Globe Valve
SW Connection, 1" 800LB Forged Steel Globe Valve, Body A105N, API602, Handwheel

1" 800LB forged steel globe valve is made according to API 602 standard. The valve body is made of A105N. It has the structural characteristics of bolt cover. Its connection mode is SW. And it has hand wheel operation mode.

Trap Valve
DN20 PN40 Cast Steel Steam Trap Valve DIN RF WCB

DN20 PN40 steam trap valve is made according to GB/T22654-2008 standard. The valve body is made of WCB. It has the structural characteristics of inverted bucket steam trap and model L881F. Its connection mode is RF.

Double Eccentric Butterfly Valve
API609, 4" 150LBS Double Eccentric Butterfly Valve, Body WCB, Lug Connection

4" 150LBS double eccentric butterfly valve is made according to API 609 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of double eccentric. Its connection mode is lug. And it has lever with lock operation mode.

Dual Plate Wafer Type Check Valve
3” 600LB Dual Plate Wafer Type Check Valve Body N08825 RTJ

3” 600LB Dual Plate Wafer Type Check Valve is made according to API594 standard. The valve body is made of N08825. It has the structural characteristics of Dual-plate, wafer type, suitable for both horizontal and vertical installation. Its connection mode is RTJ.

Ball Valve
API6D 2" 1500LB Forged Steel Trunnion Mounted Ball Valve RTJ

2" 1500LB ball valve is made according to API 6D standard. It also complies with the design standard of NACE MR0175. The valve body is made of ASTM-A105. It has the structural characteristics of full flow and trunnion mounted ball. It has RTJ connection mode and gearbox operation mode.

Y Type Strainer F53 NPT BB
3/4" 150LB Y Type Strainer F53 NPT BB

3/4” 150LB Y Type Strainer is made according to ASME B16.34 standard. The valve body is made of F53. It has the structural characteristics of BB. Its connection mode is NPT.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact