English

English

Get a Quote
Products

Hot Products

Company News

What Is the Difference Between Plug Valves and Ball Valves?
What Is the Difference Between Plug Valves and Ball Valves?
2026-02-20

Ball valves and plug valves differ significantly in several aspects, including structure, operating principle, mode of operation, flow control capability, sealing performance, and application scenarios. These differences enable the two types of valves to perform distinct roles in their respective fields.   Structural Differences   The ball valve, a design evolved from the plug valve, utilizes a spherical element as its core component. By rotating the ball 90° around the stem axis, the valve can be opened or closed. Its structure is straightforward, consisting primarily of a spherical closure element with a through-bore housed within the valve body.   In contrast, the structure of a plug valve is more complex. It comprises multiple components such as the valve body, bonnet, plug, seat, and stem. The closure element is a cylindrical or tapered plug that controls flow by rotating 90°, aligning or misaligning the port in the plug with the flow passage in the valve body to achieve opening or shutoff.   Operating Principle   The operating principle of a ball valve relies on the rotation of the ball to control the on-off flow of fluid. When the ball is in tight contact with the valve seat, the clearance between them is completely sealed, thereby preventing fluid leakage. When the ball rotates to a position disengaged from the seat, the fluid is allowed to flow freely through the passage inside the valve body.   The operating principle of a plug valve differs in that it primarily controls the flow passage by rotating the plug element to open or close the valve. In a plug valve, the plug is connected to the stem and rotates together with it to achieve flow control. The closure element is a tapered plug with a port, and the flow passage is designed to be perpendicular to the axis of the plug. This configuration enables the plug valve to operate more efficiently and reliably during opening and closing.   The operation of a ball valve is notably simple, requiring only a 90-degree rotation to achieve opening or closing. This design allows the flow passage to be opened or shut off quickly and smoothly when the ball is rotated by 90 degrees, providing both convenience and efficiency. In addition, ball valves offer relatively low flow resistance in the fully open or fully closed position, making them particularly suitable for applications that require rapid on-off operation.   By contrast, the operation of a plug valve is comparatively more complex, as several turns are typically required to complete the opening or closing action. The valve plug is designed in a cylindrical or tapered form and regulates fluid flow through rotation. Nevertheless, plug valves demonstrate excellent performance in flow regulation, enabling precise adjustment of the flow passage diameter and accurate control of flow rate. However, due to the relatively complicated operating process, plug valves are not well suited for frequent operation...

Blind Plate Valve
Blind Plate Valve
2026-02-11

In industrial valve systems, a high-quality blind plate valve ensures safe and efficient operation of equipment. It is suitable for gas pipelines in metallurgy, chemical processing, petroleum, and municipal systems, serving as an effective device for positive gas isolation.   Working Principle and Features The blind plate valve consists of left, center, and right valve bodies, a valve plate, shafts, a compensator, and two drive units (for clamping and travel respectively). The clamping mechanism uses a drive assembly to actuate a linkage system, enabling three lead screws to operate synchronously and press the valve bodies against the valve plate to achieve sealing. This design provides good synchronization and uniform sealing force distribution. Positioning rollers are installed along the outer lower edge of the valve plate to enhance sealing reliability and ensure overall stability and sealing accuracy during operation, thereby extending the service life of the valve.   Valve Operating Sequence The clamping drive unit actuates the crank and linkage mechanism, causing the lead screws to rotate synchronously and retract the center body from the sealing surfaces (release condition). Guide wheels installed on the center body move laterally and simultaneously drive the valve plate. When the valve bodies are fully opened, the valve plate is positioned between the sealing faces of the left and right bodies, and the sealing surfaces are completely disengaged. The plate drive unit is then activated. Through a lever arm mechanism, the valve plate rotates, bringing the blind plate into the pipeline position. The clamping drive unit is started again to fully clamp the valve plate, completing valve closure.   Valve Opening The clamping drive unit first fully releases the valve bodies. The turning drive unit then rotates the valve plate so that the through-port aligns with the pipeline. Finally, the clamping electric actuator presses the valve plate to complete the opening operation.

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

DN800 PN40 Butterfly Type Non-Slam Check Valve CJ/T 282 EF
加载中...

DN800 PN40 Butterfly Type Non-Slam Check Valve CJ/T 282 EF

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    A351 CF8+STL
  • Method of Operation:

    no
Inquiry now
Product Detail

DN800 PN40 Butterfly Type Non-Slam Check Valve is made according to CJ/T 282 standard. The valve body is made of A351CF8+STL. It has the structural characteristics of Equipped with Hydraulic Cylinder and Counterweight. Its connection mode is EF.

 

Product Parameters

 

Type

Butterfly Type Non-Slam Check Valve

Size

DN800

Pressure

PN40

Connection

EF

Body Material

A351 CF8+STL

Design Norm

CJ/T 282

Flange Standard

GOST33259

Dimension Standard

GB/T12221

Test & Inspection Code

GOST9544 A

Temperature

-45 ~ 248°C

Applicable Medium

Water

Features

1.Butterfly-type non-slam design minimizes water hammer and ensures smooth, rapid closure in large-diameter pipelines.

2.Manufactured in accordance with CJ/T 282, rated PN40 for reliable performance in municipal and industrial systems.

 

Technical Drawing

Butterfly Type Non-Slam Check Valve

Dimension Checking

Butterfly Type Non-Slam Check Valve

Pressure Testing

Butterfly Type Non-Slam Check Valve

Flange

Butterfly Type Non-Slam Check Valve

Inspection Report

Butterfly Type Non-Slam Check ValveButterfly Type Non-Slam Check ValveButterfly Type Non-Slam Check ValveButterfly Type Non-Slam Check Valve

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
2500LB High Pressure Non Return Valve
Pressure Seal Tilting Disc Check Valve 12 Inch 2500LB

The 12 inch high pressure check valve is designed with pressure seal bonnet, RTJ flange, tilting disc, made of carbon steel WCB body and hard face sealing. Quick Detail Type Check Valve Size 12'' DesignPressure 2500LB Construction Pressure Seal Bonnet, Tilting Disc Type Connection RTJ Flange Design & Manufacture ASME B16.34 End to End ASME B16.10 Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB Trim Material 13CR+STL Temp Range -29℃~+350℃ Media W.O.G. Product Range Body Material Range: WCB, WCC, WC1,CF8M, CF8, CF3, CF3M, LCB, LCC Size Range: 2”~60” (DN50~DN1500) End Connection Type: Flange End, Weld End Design Pressure Range: 150lbs~600lbs  Temp Range: -46℃~ +425℃ Related Knowledge What is a tilting disc check valve? The disc of a tilting disc check valve has a pivot point at the center of it. It is desinged to overcome weaknesses of general type swing check valve. Compared to swing type check valve, the tilting check valve could remain fully open and steady at lower flow rates. That is to say, the swing check valve needs a high velocity of fluid to keep disc open and a higher cracking pressure. For low pressure situation, the pressure drop of a tilting disc check valve is much lower than the swing type. But at a higher flow rate, the tilting check valve has higher pressure drop than swing type.

Check Valve
DN250 PN10 Tilting Disc Check Valve RF WCB API598

DN250 PN10 check valve body is made of A216 WCB+STL. It has the structural characteristics of heavy hammer on both sides and flange type. Its connection mode is RF.

Tilting Disc Check Valve
10" 150LB Tilting Disc Check Valve WCB Wafer API6D

10" 150LB tilting disc check valve is made according to API 6D standard. The valve body is made of A216 WCB+SS316. It has the structural characteristics of swash plate type. Its connection mode is wafer.

Tilting Disc Check Valve
RF Connection, 3" 150LB Tilting Disc Check Valve, Body CF8M, API6D

3" 150LB tilting disc check valve is made according to API 6D & BS1868 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of tilting disc type, bolt cover. Its connection mode is RF.

Body A105N, 1 1/2'' 150LB Forged Steel Globe Valve, RF Connection, API 602
Body A105N, 1 1/2'' 150LB Forged Steel Globe Valve, RF Connection, API 602

1 1/2'' 150LB forged steel globe valve is made according to API 602 standard. The valve body is made of A105N. It has the structural characteristics of BB, OS&Y. Its connection mode is RF. And it has hand wheel operation mode.

Swing Check Valve
Body WCB, 14" 150LBS Swing Check Valve, BS 1868, RF Connection

14" 150LBS swing check valve is made according to BS 1868 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of plug cover and swing type. Its connection mode is RF.

API 602 Y Pattern Globe Valve
Forged Steel Y Type Globe Valve 2 Inch Class 800 SW

Designed with 800 LB sw end, the 2 inch globe valve features in plug disc, bolted bonnet, and y type structure. The handwheel operated globe valve is made of forged steel body and stainless steel trim. Quick Detail Type Globe Valve Size 2'' Pressure ANSI 800 Structure Y Type, Y Pattern, Bolted Bonnet ConnectionType SW Operation Handwheel Operated Design Code API 602 Face to Face ASME B16.10 Connection Standard ASME B16.11 Pressure & Temperature ASME B16.34 Test & Inspection Standard API 598 Body Material ASTM A105 ApplicableTemperature -29℃~+425℃ Application Water, Oil, Gas Related Knowledge What is the main reason to use Y-pattern globe valve? A Y type globe is designed with 45° between seat and stem. In other words, the flow will remain straight linear from inlet to outlet ports.Compared to staight pattern globe valve, the y pattern globe valve reduce the flow resistance and pressure drop. This kind of y pattern globe valve is well suited for high pressures and severe application. FAQ 1. How long have you been in business and how long have you producing valves? We have been in valve exporting industry for more than 10 years since foundation in 2008. Our business has expanded tremendously to five continents all around the world.  2. What are your main products and their advantages? Our main products include gate, globe, check, ball, butterfly, plug valves and strainers, available in different materials, sizes and pressure, which are widely used in various industries. 3. Does Xiamen Dervos Valves Industry Co., Ltd. make products for other companies? Yes, of course. We have a reference list with customer information like country, product type, order volume and some even with project names.

Globe Valve
11/2" 800LB Forged Steel Globe Valve SW A105 API602

11/2" 800LB globe valve is made according to API602 standard. The valve body is made of A105+STL. It has the structural characteristics of welded bonnet. Its connection mode is SW. And it has hand wheel operation mode.

Body WCB, 3 150LB Cast Steel Globe Valve, RTJ Connection
Body WCB, 3" 150LB Cast Steel Globe Valve, RTJ Connection, BS1873

3" 150LB cast steel globe valve is made according to BS1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of bright pole bracket, body cover bolted connection. Its connection mode is RTJ. And it has hand wheel operation mode.

Butterfly Valve
2-1/2" 150LB Double Eccentric Butterfly Valve WCB Lever API609

2-1/2" 150LB butterfly valve is made according to API 609 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of double eccentric. Its connection mode is lug. And it has lever operation mode.

2 Inch 600LB API6D Ball Valve RF Full Bore 2 piece type
2 Inch 600LB API6D Ball Valve RF Full Bore 2 piece type

The forged steel ball valve is made of A105 body and 17-4PH trim with RTJ flange end and lever operation. This floating ball valve features reliable sealing performance and easy operation.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact