English

English

Get a Quote
Products

Hot Products

Company News

Why Are Many Customers Surprised When They Receive DERVOS Valves?
Why Are Many Customers Surprised When They Receive DERVOS Valves?
2025-12-18

In the export of industrial valves, packaging is often regarded as merely the final step before delivery. However, during actual transportation, packaging directly affects the overall condition of the valve during transit, handling, and even at the moment the customer unpacks it.   For industrial valves that must undergo long-distance transportation and multiple transshipments, packaging itself is an integral part of product quality. Based on extensive export experience, DERVOS has established a clear, stable, and repeatable valve packaging standard to ensure that valves are delivered to customers safely and in perfect condition.   1. Pre-Packaging Preparation and Product Verification   Before entering the packaging process, all valves undergo cleaning, inspection, and product information verification. This stage ensures that each valve is in a stable and fully controlled condition before packaging.   ● Remove oil and grease from the valve body surface ● Inspect flange sealing surfaces and the valve cavity to ensure no foreign matter is present ● Install and securely fix the nameplate to ensure product information is clear and identifiable   This process provides a reliable foundation for subsequent protection and transportation.   2. Internal Anti-Corrosion Treatment and Sealing Surface Protection   To address the conditions typically encountered during export transportation, valves receive targeted protective treatment prior to packaging:   ● The valve cavity is evenly coated with anti-rust oil to reduce the risk of corrosion in humid or salt-laden environments ● Protective covers are installed on all flange faces to prevent impact damage or contamination during handling and transport   These measures ensure that both internal components and sealing surfaces remain in good condition until the valves arrive at the customer's site.   3. Multi-Layer Inner Packaging and Individual Valve Protection   During the inner packaging stage, DERVOS applies a multi-layer cushioning structure to provide comprehensive protection for each valve:   ● Impact-resistant pearl cotton is placed around all sides and at the bottom of the inner carton ● Separators are installed between valves to prevent direct contact ● Each valve is individually wrapped with protective cushioning material, with special attention given to coatings and machined surfaces   This packaging structure effectively reduces the risk of paint damage, abrasion, and surface defects during transportation.   4. Custom Partition Fixing and User-Friendly Design   When multiple valves are packed in the same crate, custom wooden partitions are used to secure each unit:   ● Valves are precisely positioned according to their dimensions to prevent movement inside the crate ● Partitions feature chamfered edges, making it easier for customers to open the crate and remove the valves ●&nb...

What are the differences between globe valves and gate valves?
What are the differences between globe valves and gate valves?
2025-12-12

In industrial piping systems, globe valves and gate valves are two of the most commonly used shutdown valves. Although both are designed for starting and stopping fluid flow, they differ significantly in structural design, operating principles, application scenarios, and overall performance. Understanding these differences helps engineers make informed selections that ensure system efficiency, reliability, and cost-effectiveness.   I. Key Differences in Structure and Operating Principles   1. Different opening and closing mechanisms Globe Valve: The disc moves up and down along a path perpendicular to the flow direction. Shutoff is achieved when the disc and seat sealing surfaces come into full contact. Gate Valve: The gate moves vertically in a manner similar to a “gate” that is either fully open or fully closed, with sealing achieved through surface compression.  This means that globe valves are suitable for precise throttling, while gate valves are mainly used for full open or full shut service.   2. Flow path design differences A globe valve has an S-shaped flow path that forces the medium to change direction, resulting in higher flow resistance. A gate valve features a straight-through flow path with minimal resistance and low pressure drop, making it better suited for long-distance transmission.   II. Differences in Application Scenarios   1. Throttling vs. On/Off Service Globe valves can be used for throttling and flow regulation, making them suitable for applications requiring high sealing performance and precise flow control, such as steam, cooling water, and various process media.   Gate valves are not suitable for throttling, as operating them in a partially open position may cause gate vibration, damage to the sealing surfaces, and fluid-induced impact. Gate valves are ideal for large-diameter pipelines where low flow resistance is required and switching frequency is relatively low, including oil transportation, water supply and drainage, and power plant systems.   2. Size range and installation space Globe valves are generally used in small to medium sizes (more common below DN50). Their body structure is heavier and requires more installation space. Gate valves are suitable for medium to large sizes. Due to their simpler design, they offer a cost advantage in larger dimensions.   III. Sealing Performance and Pressure Ratings   1. Differences in sealing surface design The globe valve features a tapered sealing surface, which achieves tight shutoff through axial compression, making it easier to obtain reliable sealing performance. The gate valve uses either parallel or wedge-type sealing surfaces. Its sealing effectiveness depends largely on the pressure applied by the gate and is more influenced by the system’s medium pressure.   2. Pressure and temperature adaptability Both valve types are suitable for medium- to high-pressure and high-temperature applications....

Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
Key International Standards for Butterfly Valves: Detailed Overview of API 609, ISO 5752, and JB/T 8527
2025-12-05

Butterfly valves are widely used in industrial piping systems due to their compact structure, lightweight design, and quick operation. They are commonly applied in water treatment, chemical, power, oil, and gas industries. However, when dealing with industrial standards across different countries and regions, selecting a butterfly valve that meets the relevant specifications is crucial. This article provides a detailed analysis of butterfly valve design and selection requirements based on three key standards: API 609, ISO 5752, and GB/T 12238.   1. API 609 — American Petroleum Institute Standard   API 609 is the American Petroleum Institute (API) standard for metal-seated butterfly valves, primarily used in the oil, gas, and chemical industries. The standard defines valve structure, materials, dimensions, and pressure ratings to ensure reliable performance under high temperature, high pressure, and corrosive media conditions.   Key points include: ● Pressure Ratings: Covers Class 150 to 1500, accommodating various service conditions. ● Body and Disc Design: Metal-to-metal sealing requires precise alignment between disc and seat to prevent leakage under high temperature or high pressure. ● Testing and Inspection: Includes shell tests, seat leakage tests, and operational performance checks to ensure valve safety and reliability.   For high-temperature steam or high-pressure oil and gas pipelines, selecting a butterfly valve compliant with API 609 can significantly reduce leakage risk and extend equipment lifespan.   2. ISO 5752 — International Standard Organization Standard   ISO 5752 is the International Organization for Standardization (ISO) standard that specifies end dimensions and flange connection sizes for valves. It defines the face-to-face dimensions, flange sizes, and connection methods for butterfly valves, providing a consistent interface specification for industrial users worldwide.   Key points include: ● Face-to-Face Dimensions: Specifies valve lengths for different nominal diameters to ensure compatibility with piping systems. ● Flange Dimensions: Ensures valves match international standard pipe fittings, such as ANSI or DIN flanges. ● Interchangeability: Butterfly valves designed according to ISO 5752 can be replaced or serviced globally without redesigning the pipeline interface.   ISO 5752 is particularly suitable for multinational engineering projects, ensuring the universality of butterfly valves across different plants and systems.   3. JB/T8527 — Chinese National Standard   JB/T8527 is the Chinese national standard specifying the dimensions, structure, and testing requirements for metal hard-seal butterfly valves. It is widely applied in domestic industrial projects such as water conservancy, power, and petrochemical industries, serving as an important reference for procurement and acceptance.   Key ...

6 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel
加载中...

6" 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel

6" 150LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 WC6. It has the structural characteristics of bolt cover, elastic gate, rising stem, OS&Y, full bore, body valve seat. Its connection mode is RF (125~250AARH). And it has hand wheel operation mode.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    ASTM A217 WC6
  • Method of Operation:

    Hand Wheel
Inquiry now
Product Detail

Product Description

Type

Gate Valve

Size

6"

Pressure

150LB

Connection

RF (125~250AARH)

Operation

Hand Wheel

Body Material

ASTM A217 WC6

Design Norm

API 600

Face to Face Dimension

ASME B16.10

Flange Dimension

ASME B16.5

Test & Inspection Code

API 598

Temperature

-29 ~ 538°C

Applicable Medium

Water, Oil and Gas

Features

1. Alloy steel has high strength, tensile strength, and good toughness, and can withstand high pressure and high temperature environments, making it suitable for harsh working conditions;

2. Alloy steel materials can maintain stable mechanical properties at high temperatures and are suitable for high-temperature pipeline systems such as steam, oil and gas. They are widely used in industries such as power, petroleum, and chemical.

Technical Drawing

Dimension Checking

Pressure Testing

Painting

Nameplate & Packing

Inspection report

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y
API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y

10’’ 300LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 C5 + STL. It has the structural characteristics of rising stem and bolt cover. The gate valve connected by flange has the operation mode of hand wheel.

10 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear
10" 300LB Alloy Steel Gate Valve RF C5 API600 Bevel Gear

10" 300LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 C5. It has the structural characteristics of bolt cover, elastic gate, rising stem, OS&Y, full bore and body valve seat. Its connection mode is RF (125~250AARH). And it has bevel gear operation mode.

Alloy Steel Gate Valve
2" 600LB Alloy Steel Gate Valve WC6 BW SCH 80 API 600

2" 600LB Alloy Steel Gate Valve is made according to API 600 standard. The valve body is made of ASTM A217 WC6. It has the structural characteristics of Body cover bolt. Its connection mode is BW SCH 80. And it has Non lifting handwheel operation mode.

300LB Alloy Steel Globe Valve
API623 3" 300LB Alloy Steel Globe Valve A217 WC6 RF H.W.

3" 300LB Alloy Steel Globe Valve is made according to API623 standard. The valve body is made of A217 WC6. It has the structural characteristics of through way type and structural length of 317.5mm. Its connection mode is RF. And it has hand wheel operation mode.

API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y
API600 ALLOY STEEL 10'' 300LB GATE VALVE BB RF OS&Y

10’’ 300LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 C5 + STL. It has the structural characteristics of rising stem and bolt cover. The gate valve connected by flange has the operation mode of hand wheel.

Swing Check Valve
Body A105N, API602, NPT Connection, 2'' 800LB Swing Check Valve

2" 800LB swing check valve is made according to API 602 standard. The valve body is made of ASTM A105N. It has the structural characteristics of bolted cover, swing type. Its connection mode is NPT.

Floating Ball Valve
RF Connection, 1 1/2" 150LB Floating Ball Valve, 2 PCS Forged Steel, Body A105

1 1/2" 150LB floating ball valve is made according to ASME B16.34 standard. The valve body is made of A105. It has the structural characteristics of 2-piece, floating ball, full bore, fireproof, anti-static, anti-flying valve stem. Its connection mode is RF. And it has lever (with locking device) operation mode.

Wafer Check Valve
API594 3" 150LB Dual Plate Wafer Check Valve API598 LCC

3" 150LB wafer check valve is made according to API594 standard. The valve body is made of A352 LCC + 316. It has the structural characteristics of double plate and built-in type. Its connection mode is wafer type.

1”800LB Forged Steel Floating Ball Valve
1”800LB Forged Steel Floating Ball Valve N08825 SW

1”800LB Floating Ball Valve is made according to ASME B16.34 standard. The valve body is made of INCONEL 825. It has the structural characteristics of Full bore, floating ball, threaded body. Its connection mode is SW. And it has hand wheel operation mode.

Double Disc Check Valve
Double Disc Check Valve DN3202 PN25 DN100 CF8

The double- disc check valve, made of CF8 stainless steel, has excellent resistance to corrosion. Designed in accordance with DIN 3202, the check valve is about to connect to pipes with WAFER. Quick Detail Type Check Valve Nominal Diameter DN100 NominalPressure PN25 Construction Double disc/ Dual Plate Connection Wafer Type Design & Manufacture DIN 3202 End to End  DIN 3202 Flange End Dimension DIN 2401 Test & Inspection  API 598 Temperature Range -29℃~+425℃ Body Material A351 CF8 Wedge Material A351 CF8 Media W.O.G. Dervos Packaging Good packing means good first impression. Just imagine how do you feel differently when seeing two boxes below? And you will know the reason why in Dervos we value packaging so much. In Dervos, we make sure- 1. Every valve isclean and dry. What do we do? -Clean the valve before packing -Add anti-rust oil -Add flange cover 2. No damageto valves in delivery. How do we achieve this? -Fix the valve with iron wire -Separate the valve with soft material -Layer the valve with plywood 3. Strong box and clear shipping mark

Trunnion Mounted Ball Valve
RF Connection, 12" 150LBS 3PCS Trunnion Mounted Ball Valve, Body F316, API6D

12" 150LBS trunnion mounted ball valve is made according to API 6D standard. The valve body is made of A182 F316. It has the structural characteristics of fixed ball, full bore, 3-piece, fire-resistant design in accordance with API6FA. Its connection mode is RF. And it has worm gear operation mode.

Strainer
8" 150LB Basket Strainer RF WCB ASME B16.34

8" 150LB basket strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of basket type, single cylinder. Its connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact