English

English

Get a Quote
Products

Hot Products

Company News

Check Valve Maintenance: When to Replace and How to Fix Common Issues
Check Valve Maintenance: When to Replace and How to Fix Common Issues
2025-11-06

A check valve is a critical device that prevents backflow, widely used in water treatment, oil & gas pipelines, chemical processing, and steam systems.   After long-term operation, check valves may experience issues such as leakage, vibration noise, or sticking. If not addressed promptly, these problems can reduce system efficiency and even cause equipment damage or safety hazards.   So, how can you tell if a check valve needs replacement? Which faults can be repaired, and which require a full replacement? This article provides a systematic guide.   1. Basic Operating Principle of Check Valves   The primary function of a check valve is to automatically prevent backflow. When fluid flows in the intended direction, the valve disc is pushed open by pressure; when flow reverses, the disc closes automatically, using either its own weight or a spring, preventing backflow.   Common types include: Lift Check Valve Swing Check Valve Dual Plate Wafer Check Valve Ball Check Valve    Although their designs vary, the key criteria for determining whether a check valve needs replacement remain the same: sealing performance, operational smoothness, and structural integrity.   2. How to Determine if a Check Valve Needs Replacement   Visible Leakage (Internal or External) If fluid continues to flow backward when the valve is closed, it indicates significant wear or deformation of the sealing surfaces, preventing an effective seal. If the leakage exceeds system tolerances and cannot be corrected by cleaning or resurfacing, the valve or its sealing components should be replaced.   Sticking or Inflexible Valve Disc After long-term operation, the valve stem, guides, or disc may become stuck due to scaling, corrosion, or debris. If cleaning, descaling, or lubrication fails to restore smooth operation, replacement is recommended.   Excessive Noise or Vibration Frequent opening and closing or rapid disc rebound can cause vibration or knocking sounds. This is usually due to spring failure, loose valve components, or worn guides. Persistent or frequent noise should trigger inspection of the valve’s structural integrity and consideration for replacement.   Corroded or Cracked Valve Body or Cover Exposure to acidic, alkaline, or high-temperature fluids can corrode or crack the valve body, compromising structural strength and posing safety risks. Such damage cannot be repaired and requires full valve replacement.   Frequent Backflow or Abnormal System Pressure Fluctuations Poor sealing or delayed valve response can cause system pressure variations, including water hammer. If repeated adjustments do not resolve the issue, it indicates aging of the internal spring or disc mechanism, necessitating timely replacement.   3. Common Fault Diagnosis and Solutions   Fault: Valve fails to close completely, causing backflow Cause: Worn sealing surfaces, deformed disc, or trapped debris Solution: Remove ...

What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
2025-10-31

If you’ve ever hesitated between choosing a flanged or threaded globe valve, you’re not alone. Globe valves are common shut-off valves widely used in industries such as oil and gas, chemical processing, power generation, shipbuilding, and water treatment. While both connection types can control fluid flow, they differ significantly in terms of installation method, sealing performance, and suitable applications. This article will provide a systematic comparison of flanged and threaded globe valves from the perspectives of structure, performance, and application.   I. Fundamental Difference in Connection Methods   1.Flanged Globe Valve A flanged globe valve connects to the pipeline through flanges, with bolts tightening the flange faces together to ensure a secure seal.This connection type offers excellent strength and reliability, making it ideal for medium to high-pressure, large-diameter, and frequently operated systems.In industrial applications, typical sizes range from DN50 to DN300, and flange dimensions generally follow international standards such as ANSI, DIN, or JIS.   2. Threaded Globe ValveA threaded globe valve typically uses either internal (NPT/BSP) or external threads to connect to the pipeline, relying on the threads themselves for sealing.This compact and lightweight structure allows for easy installation and is mainly used in small-diameter (usually ≤ DN50) and low-pressure systems, including residential pipelines.Because it does not require welding or flange gaskets, a threaded valve is more cost-effective in both installation and maintenance.     II. Comparison of Sealing Performance and Maintenance   Flanged Globe ValveFlanged globe valves typically use metal or flexible graphite gaskets for sealing, offering excellent resistance to high temperature, high pressure, and corrosion.During long-term operation, maintenance or valve replacement is straightforward—simply loosen the flange bolts to disassemble the valve.   Threaded Globe ValveThe sealing of a threaded globe valve mainly depends on the thread engagement and sealing materials such as PTFE tape or sealing paste.However, repeated disassembly can damage the threads and increase the risk of leakage.For this reason, threaded globe valves are better suited for fixed installations, clean fluids, and low-pressure systems.     III. Structural Dimensions and Installation Requirements   Flanged Globe ValveFlanged globe valves are larger in size and require more installation space, but they provide superior vibration resistance and pressure tolerance.They are commonly used in industrial piping networks or pump station systems where sufficient structural support is available.   Threaded Globe ValveThreaded globe valves feature a compact design, making them ideal for confined spaces or lightweight piping systems such as laboratories, compressor inlets and outlets, and domestic water supply lines.However, thr...

Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
2025-10-24

The global industrial valve market is undergoing a quiet yet significant transformation. Growth is no longer driven mainly by new construction projects — instead, it’s increasingly fueled by the replacement and modernization of aging equipment and infrastructure. From petrochemical plants to municipal water systems and natural gas pipelines, valve upgrades have become a key priority across industries.   Aging Equipment Drives Rising Valve Replacement Demand   In many industrial facilities, valves—though seemingly durable—gradually suffer from seal wear, sluggish operation, and leakage after years of service. For plants operating over a decade, valve degradation has become a major factor affecting safety and efficiency.   With stronger focus on maintenance, process safety, and energy efficiency, end users in oil & gas, power, and water treatment sectors are accelerating valve replacement and upgrade projects. This trend aligns with a global shift toward predictive maintenance and sustainable operations, increasing demand for ball valves, gate valves, and control valves.   Market research from Mordor Intelligence and others shows a shorter valve replacement cycle due to rising maintenance costs and downtime risks. Stricter environmental and safety standards are also pushing faster modernization worldwide. In the U.S., for example, the water sector—with pipelines averaging over 40 years old—is investing in large-scale valve renewal programs to reduce leakage and unplanned shutdowns. Similar initiatives are emerging across Europe and Asia.   Infrastructure Investment Fuels Market Expansion   Beyond replacements, ongoing infrastructure investment continues to drive valve demand globally. Asia’s rapid industrial growth and the Middle East’s refining and petrochemical expansion have led to increased valve procurement.   According to GMI Insights, the global industrial valve market reached USD 75.9 billion in 2024 and is projected to hit USD 142.6 billion by 2034 (CAGR: 6.6%). Precedence Research forecasts even higher potential—up to 12.5% CAGR.   This growth is backed by large-scale upgrades in urban water networks, wastewater treatment plants, natural gas pipelines, and energy transition projects such as hydrogen and carbon capture systems, all requiring next-generation high-performance valves.   Valve Replacement Becomes a Smart Technology Upgrade   Modern valves are evolving beyond mechanical parts. With smart manufacturing and the Industrial Internet of Things (IIoT), today’s valves feature sensors, smart actuators, and remote monitoring. Engineers can now track performance in real time and conduct predictive maintenance, reducing unexpected downtime.   Advanced materials like corrosion-resistant alloys, cryogenic steels, and special polymers are extending service life and reliability—especially in harsh environments. For indu...

 Ductile Iron Gate Valve
加载中...

Ductile Iron Gate Valve Non Rising Stem PN10 GGG50

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    35~60 days Ex Works After Order Confirmation
  • Material:

    Cast Iron
  • Method of Operation:

    Hand Wheel
Inquiry now
Product Detail

The ductile iron gate valve has GGG50 body material and EPDM soft seat. The valve is designed with non-rising stem, RF connection and manual operation, used in fire water.


Quick Detail

Type

Gate Valve

Size

DN300, DN400

Design Pressure

PN10

Construction

Non-rising Stem, Soft Seat

ConnectionType

Flange

OperationType

Handwheel Operation

Body Material

GGG50

TrimMaterial

Stem 2Cr13, EPDM Seat

Medium

Water

Origin

China


Hydrostatic Pressure Test

Soft Seated Gate Valve


Dimension Checking

Cast Iron Gate Valve Supplier


Packing

Non Rising Stem Gate Valve

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Cast Iron Non Rising Stem Gate Valve
Cast Iron Non Rising Stem Gate Valve RF DN80 PN16

The DN80 PN16 cast iron gate valve has face to face dimension as per DIN3202 F4 or DIN3202 F5. This GG25 gate valve is designed with resilient seat, non rising stem, bb, RF flange, suitable for water treatment application. Quick Detail Type Gate Valve Nominal Diameter DN 80 Nominal Pressure PN 16 ConstructionType Non-rising stem, Bolted Bonnet, Resilient Seat ConnectionType Flanged OperationType Handwheel Operation Body Material Cast Iron GG25 TrimMaterial Cast Iron Wedge, SS420 Stem, EPDM Seat Design Code DIN 3352 End to End Code DIN 3202 Flange Dimesion DIN 2501 Medium Water Origin China Design Feature 1.Resilient seat for good sealing performance 2.Low flow resistance and small pressure drop 3.Non-rising stem for installation space is limited 4.No limitation for flow direction of medium 5.Epoxy painting available for internal and external part of the valve for anti corrosive function Company Brief Introduction Specializing in valve industry over 10 years, Dervos becomes the leading vendor of gate, globe, check, ball, butterfly, plug valves and strainers. We serve oil and gas user such as LUKOIL, MOL, YPF with local partners. Dervos show its advantages in: 1. Our partnerships with tens of stable suppliers allow us to provide customers with a wide range of high-quality products at a competitive price. 2. Each order is under strict quality control with inspection reports before delivery. 3. We value delivery time as much as our customers do. With the powerful purchasing system, we follow each order closely to secure on-time delivery. 4. One-stop solutions will be offered in a timely manner

DN200 PN10 Resilient Gate Valve Non-rising Stem, RF
DN200 PN10 Resilient Gate Valve Non-rising Stem, RF

The gate valve is made of ductile iron GGG50 . The valves disc is rubber-packed to get excellent sealing effect by the rubber's resilient deformation. Non-rising resilient seated gate valves solve the problem in general gate valves such as leakage, rusting etc. And it also saves space.

Gate Valve
DN800 PN10 Cast Iron Gate Valve RF GGG50 DIN

DN800 PN10 gate valve is made according to DIN standard. The valve body is made of GGG50. It has the structural characteristics of F4 drinking water soft gate. Its connection mode is RF, and it has gear operation.

Strainer
1" 2500LB Y Type Strainer BW F316H ASME B16.34

1" 2500LB strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A182 F316H. It has the structural characteristics of pressure self sealing and Y type. Its connection mode is BW SCH160.

2 1/2 600LB Forged Steel Gate Valve Body A105 BW H.W.
2 1/2" 600LB Forged Steel Gate Valve Body A105 BW H.W.

2 1/2" 600LB Forged Steel Gate Valve is made according to API 602 standard. The valve body is made of A105. It has the structural characteristics of Bolted Bonnet, Rising Stem, Solid Wedge, Renewable Seat, Full Bore. Its connection mode is BW. And it has hand wheel operation mode.

Angle Bellows Sealed Globe Valve
DN200 PN16 Angle Bellows Sealed Globe Valve RF 1.4408

DN200 PN16 angle bellows sealed globe valve is made according to BS EN 13709 standard. The valve body is made of EN 10213 1.4408. It has the structural characteristics of body cover bolt, exposed pole bracket, angle type, bellow seal. Its connection mode is RF. And it has hand wheel operation mode.

Plug Valve
1" 600LB Inverted Pressure Balance Lubricated Plug Valve API 6D

1" 600LB plug valve is made according to API 6D standard. The valve body is made of A105. It has the structural characteristics of oil sealed and full bore. Its connection mode is FNPT. And it has handle (with locking device) operation mode.

Pressure-Seal Bonnet Check Valve, ASTM A105N, 1 Inch, Class 1500
Pressure-Seal Bonnet Check Valve, ASTM A105N, 1 Inch, Class 1500

High Pressure Check Valve Supplier in China Offers Pressure-Seal Bonnet Check Valve, ASTM A105N, 1 Inch, Class 1500 LB, Forged Steel Lift Check Valve.

DN50 PN40 Forged Floating Ball Valve Body F304 ISO 17292 RF
DN50 PN40 Forged Floating Ball Valve Body F304 ISO 17292 RF

DN50 PN40 Forged Floating Ball Valve is made according to ISO 17292 standard. The valve body is made of ASTM A182 F304. It has the structural characteristics of Full Bore, Floating Ball, Fire-safe and Anti-static, Blow-out Proof Stem. Its connection mode is RF. And it has hand wheel operation mode.

Lift Check Valve
BS5352, DN15 PN16 Lift Check Valve, Body F304, EN1092-1 B Connection

DN15 PN16 lift check valve is made according to BS 5352 standard. The valve body is made of A182-F304+STL. It has the structural characteristics of plug cover, lifting type with spring. Its connection mode is EN1092-1 B.

DN50 PN25 Double Heating Jacketed Gate Valve with OSY
DN50 PN25 Double Heating Jacketed Gate Valve with OSY

This DN50 gate valve is one of the recent batch of our fresh double heating jacketed gate valves whose diameter ranges from DN50 to DN250. The double jacket prevents the valve body from beingcorroded by insulation media.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact