English

English

Get a Quote
Products

Hot Products

Company News

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

What Causes Ball Valve Failure? 5 Common Issues and How to Prevent Them
What Causes Ball Valve Failure? 5 Common Issues and How to Prevent Them
2025-04-11

Ball valves are widely used industrial flow control components, commonly found in applications such as water treatment, oil and gas, chemical processing, HVAC systems, and the food and pharmaceutical industries. Thanks to their compact structure, quick shut-off capability, and excellent sealing performance, ball valves play a critical role in various fluid systems. However, even the most reliable ball valve can encounter failures after prolonged operation. When a ball valve fails, it can compromise the stability of the entire system and, in severe cases, lead to media leakage or even safety incidents. Therefore, understanding the root causes of ball valve failure and implementing effective preventive measures is essential for engineers and maintenance personnel.   1. Seal Failure Cause: Seal failure in ball valves is often caused by seat wear, debris accumulation, or aging of sealing materials. This issue is especially common in high-temperature, high-pressure, or corrosive media environments. Prevention Tips: To extend the service life of the seal, choose ball valves with PTFE or metal seats that are compatible with the process media. Regularly clean the seat area and establish a replacement schedule based on the operating conditions.   2. Corrosion or Scratches on the Ball Surface Cause: When a ball valve is used with media containing acids, alkalis, high salt content, or abrasive particles, improper material selection can lead to corrosion, pitting, or surface scratches. These issues reduce sealing performance and affect smooth operation. Prevention Tips: Select stainless steel ball valves (such as 304 or 316 grades) or special alloy ball valves based on the specific media characteristics. Additionally, install a strainer or filter to minimize solid particle intrusion and protect the valve internals.   3. Stem Breakage or Seizure Cause: The valve stem, which transmits torque to the ball, may experience metal fatigue and fracture under frequent operation or excessive torque. Seizure can also occur due to bearing wear or lack of lubrication. In some low-quality ball valves, insufficient structural design margin further increases the risk of stem failure. Prevention Tips: Use ball valves with blow-out proof stem designs to enhance operational safety. Ensure that operating torque stays within the valve’s rated limits, and apply lubricant regularly to reduce friction and wear, extending service life.   4. Improper Installation or Operation Cause: Human errors such as incorrect installation direction, loose flange connections, or frequent forceful operation are major contributors to early ball valve failure. In the case of electric or pneumatic ball valves, signal control errors can also lead to misoperation or valve jamming. Prevention Tips: Always follow the manufacturer’s installation guidelines, ensure proper alignment and secure flange connections. Install limit switches and torque protection devices to safeguard...

Gate Valve
加载中...

DN800 PN10 Cast Iron Gate Valve RF GGG50 DIN

DN800 PN10 gate valve is made according to DIN standard. The valve body is made of GGG50. It has the structural characteristics of F4 drinking water soft gate. Its connection mode is RF, and it has gear operation.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    GGG50
  • Method of Operation:

    G.O.
Inquiry now
Product Detail

Product Description

Type

Gate Valve

Size

DN800

Pressure

PN10

Connection

RF

Operation

G.O.

Body Material

GGG50

Wedge

GGG50/BS2494

Stem

SS420

Design Norm

DIN

Applicable Medium

Water, Oil and Gas

Features

1. Low flow resistance, high height, and long opening and closing time.

2. Low flow resistance, effortless opening and closing, and less prone to water hammer phenomenon.

Technical Drawing

Dimension Checking

Pressure Testing

Painting

Nameplate & Packing

Inspection report


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Cast Iron Non Rising Stem Gate Valve
Cast Iron Non Rising Stem Gate Valve RF DN80 PN16

The DN80 PN16 cast iron gate valve has face to face dimension as per DIN3202 F4 or DIN3202 F5. This GG25 gate valve is designed with resilient seat, non rising stem, bb, RF flange, suitable for water treatment application. Quick Detail Type Gate Valve Nominal Diameter DN 80 Nominal Pressure PN 16 ConstructionType Non-rising stem, Bolted Bonnet, Resilient Seat ConnectionType Flanged OperationType Handwheel Operation Body Material Cast Iron GG25 TrimMaterial Cast Iron Wedge, SS420 Stem, EPDM Seat Design Code DIN 3352 End to End Code DIN 3202 Flange Dimesion DIN 2501 Medium Water Origin China Design Feature 1.Resilient seat for good sealing performance 2.Low flow resistance and small pressure drop 3.Non-rising stem for installation space is limited 4.No limitation for flow direction of medium 5.Epoxy painting available for internal and external part of the valve for anti corrosive function Company Brief Introduction Specializing in valve industry over 10 years, Dervos becomes the leading vendor of gate, globe, check, ball, butterfly, plug valves and strainers. We serve oil and gas user such as LUKOIL, MOL, YPF with local partners. Dervos show its advantages in: 1. Our partnerships with tens of stable suppliers allow us to provide customers with a wide range of high-quality products at a competitive price. 2. Each order is under strict quality control with inspection reports before delivery. 3. We value delivery time as much as our customers do. With the powerful purchasing system, we follow each order closely to secure on-time delivery. 4. One-stop solutions will be offered in a timely manner

 Ductile Iron Gate Valve
Ductile Iron Gate Valve Non Rising Stem PN10 GGG50

The ductile iron gate valve has GGG50 body material and EPDM soft seat. The valve is designed with non-rising stem, RF connection and manual operation, used in fire water. Quick Detail Type Gate Valve Size DN300, DN400 Design Pressure PN10 Construction Non-rising Stem, Soft Seat ConnectionType Flange OperationType Handwheel Operation Body Material GGG50 TrimMaterial Stem 2Cr13, EPDM Seat Medium Water Origin China Hydrostatic Pressure Test Dimension Checking Packing

DN200 PN10 Resilient Gate Valve Non-rising Stem, RF
DN200 PN10 Resilient Gate Valve Non-rising Stem, RF

The gate valve is made of ductile iron GGG50 . The valves disc is rubber-packed to get excellent sealing effect by the rubber's resilient deformation. Non-rising resilient seated gate valves solve the problem in general gate valves such as leakage, rusting etc. And it also saves space.

Strainer
API598 6" 150LB Y Type Strainer RF C95800 ASME B16.34

6" 150LB Y type strainer is made according to ASME B16.34 standard. The valve body is made of ASTM B148 C95800. It has the structural characteristics of bonnet with 1/2 "FNPT plug. Its connection mode is RF.

Cast Steel Slab Gate Valve
RTJ Connection, 12" 1500LB Cast Steel Slab Gate Valve, Body WCB, Gearbox Operation

12" 1500LB cast steel slab gate valve is made according to API 6D standard. The valve body is made of A216 WCB. It has the structural characteristics of body cover bolt, full flow, cleanable pipe, anti-fire design. Its connection mode is RTJ. And it has gearbox operation mode.

DN80 PN10 Air Release Valve EN1092-1 QT450 CJ/T217-2005
DN80 PN10 Air Release Valve EN1092-1 QT450 CJ/T217-2005

DN80 PN10 Air Release valve is made according to CJ/T217-2005 standard. The valve body is made of QT450. Its connection mode is EN1092-1.

Cast Steel Globe Valve
8" 300LB Cast Steel Globe Valve RF WCB Gear BS1873

8" 300LB globe valve is made according to BS1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of straight through type and rising stem. Its connection mode is RF. And it has gear operation mode.

2 Piece Floating Ball Valve WCB 150LB 4Inch Reduced Bore
2 Piece Floating Ball Valve WCB 150LB 4Inch Reduced Bore

The 2-piece floating ball valve, made in accordance with API 6A, has a design of reduced bore, fire safe design, anti blowout stem. With the RPTFE seat and PTFE O ring, the 4 inch WCB valve is certificate to serve you.

6 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel
6" 150LB Alloy Steel Gate Valve RF WC6 API600 Hand Wheel

6" 150LB gate valve is made according to API 600 standard. The valve body is made of ASTM A217 WC6. It has the structural characteristics of bolt cover, elastic gate, rising stem, OS&Y, full bore, body valve seat. Its connection mode is RF (125~250AARH). And it has hand wheel operation mode.

API6D, 12 1500LB Top Entry Ball Valve, RTJ Connection, Body WCB
API6D, 12" 1500LB Top Entry Ball Valve, RTJ Connection, Body WCB, Turbine

12" 1500LB top entry ball valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of top mounted, fixed ball, full bore, fire-safe design and anti-static, blowout-proof stem, inner diameter: 295mm. Its connection mode is RTJ. And it has turbine operation mode.

Wafer Check Valve
3" 150LB Dual Plate Wafer Check Valve RF LCC API594

3" 150LB wafer check valve is made according to API 594 standard. The valve body is made of A352 LCC+316. It has the structural characteristics of double disc and wafer type. Its connection mode is RF.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact