English

English

Get a Quote
Products

Hot Products

Company News

Maintenance Tips to Extend the Service Life of Butterfly Valves
Maintenance Tips to Extend the Service Life of Butterfly Valves
2025-11-14

Butterfly valves are widely used as regulating and shut-off devices in industrial piping systems, valued for their simple structure, lightweight design, and rapid open-close operation. They find applications across water treatment, chemical, metallurgical, power, oil, and gas industries.   However, even high-quality butterfly valves can experience performance degradation if proper maintenance is neglected over long-term operation.This article explores the structural features, common issues, and maintenance practices to help effectively extend the service life of butterfly valves.   1. Understanding the Operational Characteristics of Butterfly Valves   A butterfly valve primarily consists of a valve body, disc, stem, sealing elements, and an actuator. Its operation relies on the rotation of the disc, driven by the stem, to control fluid flow.   During operation, the disc remains immersed in the fluid, subject to erosion, corrosion, and pressure shocks. Therefore, the valve’s lifespan is closely related to sealing performance, material selection, and the operating environment.   2. Common Factors Affecting Butterfly Valve Lifespan   Frequent Operation and High Differential Pressure High-frequency cycling or prolonged operation under high pressure and flow velocity can cause valve seat wear and stem seal aging.   Corrosive Media and Sediment Build-Up Chemical fluids or particulate-laden media can corrode the disc and clog sealing surfaces, reducing smooth operation.   Improper Installation Misalignment between the valve and pipeline, or uneven bolt tightening, may lead to eccentric disc friction and damage to sealing elements.   Lack of Regular Maintenance Neglecting routine cleaning and lubrication can increase operating torque, accelerate seal wear, and shorten the valve’s overall service life.   3. Maintenance Tips to Extend Butterfly Valve Lifespan   1. Proper Installation as the Foundation Ensure the valve body is aligned with the pipeline center to avoid eccentric stress. Use appropriate gaskets between the valve and flange to prevent localized stress. For actuated butterfly valves, confirm correct travel adjustment to avoid exceeding torque limits.   2. Regular Cleaning and Inspection Periodically remove deposits and debris from the disc surface to prevent seal surface damage. Check stem packing and seals; replace immediately if signs of aging are detected. For pipelines carrying particulate-laden media, flush the valve regularly to prevent clogging.   3. Lubrication and Corrosion Protection Apply grease to the stem, bearings, and drive components regularly to maintain smooth operation. For valves operating in seawater or corrosive environments, select corrosion-resistant coatings or materials such as aluminum bronze or duplex stainless steel.   4. Proper Operation and Control  Avoid rapid or forced operation to prevent disc deformation from impact. If the ...

Check Valve Maintenance: When to Replace and How to Fix Common Issues
Check Valve Maintenance: When to Replace and How to Fix Common Issues
2025-11-06

A check valve is a critical device that prevents backflow, widely used in water treatment, oil & gas pipelines, chemical processing, and steam systems.   After long-term operation, check valves may experience issues such as leakage, vibration noise, or sticking. If not addressed promptly, these problems can reduce system efficiency and even cause equipment damage or safety hazards.   So, how can you tell if a check valve needs replacement? Which faults can be repaired, and which require a full replacement? This article provides a systematic guide.   1. Basic Operating Principle of Check Valves   The primary function of a check valve is to automatically prevent backflow. When fluid flows in the intended direction, the valve disc is pushed open by pressure; when flow reverses, the disc closes automatically, using either its own weight or a spring, preventing backflow.   Common types include: Lift Check Valve Swing Check Valve Dual Plate Wafer Check Valve Ball Check Valve    Although their designs vary, the key criteria for determining whether a check valve needs replacement remain the same: sealing performance, operational smoothness, and structural integrity.   2. How to Determine if a Check Valve Needs Replacement   Visible Leakage (Internal or External) If fluid continues to flow backward when the valve is closed, it indicates significant wear or deformation of the sealing surfaces, preventing an effective seal. If the leakage exceeds system tolerances and cannot be corrected by cleaning or resurfacing, the valve or its sealing components should be replaced.   Sticking or Inflexible Valve Disc After long-term operation, the valve stem, guides, or disc may become stuck due to scaling, corrosion, or debris. If cleaning, descaling, or lubrication fails to restore smooth operation, replacement is recommended.   Excessive Noise or Vibration Frequent opening and closing or rapid disc rebound can cause vibration or knocking sounds. This is usually due to spring failure, loose valve components, or worn guides. Persistent or frequent noise should trigger inspection of the valve’s structural integrity and consideration for replacement.   Corroded or Cracked Valve Body or Cover Exposure to acidic, alkaline, or high-temperature fluids can corrode or crack the valve body, compromising structural strength and posing safety risks. Such damage cannot be repaired and requires full valve replacement.   Frequent Backflow or Abnormal System Pressure Fluctuations Poor sealing or delayed valve response can cause system pressure variations, including water hammer. If repeated adjustments do not resolve the issue, it indicates aging of the internal spring or disc mechanism, necessitating timely replacement.   3. Common Fault Diagnosis and Solutions   Fault: Valve fails to close completely, causing backflow Cause: Worn sealing surfaces, deformed disc, or trapped debris Solution: Remove ...

What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
2025-10-31

If you’ve ever hesitated between choosing a flanged or threaded globe valve, you’re not alone. Globe valves are common shut-off valves widely used in industries such as oil and gas, chemical processing, power generation, shipbuilding, and water treatment. While both connection types can control fluid flow, they differ significantly in terms of installation method, sealing performance, and suitable applications. This article will provide a systematic comparison of flanged and threaded globe valves from the perspectives of structure, performance, and application.   I. Fundamental Difference in Connection Methods   1.Flanged Globe Valve A flanged globe valve connects to the pipeline through flanges, with bolts tightening the flange faces together to ensure a secure seal.This connection type offers excellent strength and reliability, making it ideal for medium to high-pressure, large-diameter, and frequently operated systems.In industrial applications, typical sizes range from DN50 to DN300, and flange dimensions generally follow international standards such as ANSI, DIN, or JIS.   2. Threaded Globe ValveA threaded globe valve typically uses either internal (NPT/BSP) or external threads to connect to the pipeline, relying on the threads themselves for sealing.This compact and lightweight structure allows for easy installation and is mainly used in small-diameter (usually ≤ DN50) and low-pressure systems, including residential pipelines.Because it does not require welding or flange gaskets, a threaded valve is more cost-effective in both installation and maintenance.     II. Comparison of Sealing Performance and Maintenance   Flanged Globe ValveFlanged globe valves typically use metal or flexible graphite gaskets for sealing, offering excellent resistance to high temperature, high pressure, and corrosion.During long-term operation, maintenance or valve replacement is straightforward—simply loosen the flange bolts to disassemble the valve.   Threaded Globe ValveThe sealing of a threaded globe valve mainly depends on the thread engagement and sealing materials such as PTFE tape or sealing paste.However, repeated disassembly can damage the threads and increase the risk of leakage.For this reason, threaded globe valves are better suited for fixed installations, clean fluids, and low-pressure systems.     III. Structural Dimensions and Installation Requirements   Flanged Globe ValveFlanged globe valves are larger in size and require more installation space, but they provide superior vibration resistance and pressure tolerance.They are commonly used in industrial piping networks or pump station systems where sufficient structural support is available.   Threaded Globe ValveThreaded globe valves feature a compact design, making them ideal for confined spaces or lightweight piping systems such as laboratories, compressor inlets and outlets, and domestic water supply lines.However, thr...

PSB Globe Valve BW 1500LB
加载中...

Pressure Sealed Bonnet Globe Valve 6 Inch 1500LB BW

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    35~60 days Ex Works After Order Confirmation
  • Material:

    Carbon Steel Globe Valve, Cast Steel Globe Valve
  • Method of Operation:

    Gearbox Operation Globe Valve
Inquiry now
Product Detail
The 6 Inch PSB globe valve has 1500LB design pressure, butt weld end, and gearbox. The full bore globe valve is made of carbon steel WCB body and trim 5 material.

Quick Detail

Type

Globe Valve

Size

6''

Design Pressure

Class 1500

Construction

Pressure Seal Bonnet, Plug Type Disc, Rising Stem

Connection Type

Butt Weld

Operation Type

Bevel Gearbox Opearted

Design Code

BS 1873

End to End

ASME B16.10

Connection End

ASME B16.25

Pressure & Temperature

ASME B16.34

Test & Inspection Standard

API 598

Body Material

Cast Steel WCB

Trim Material

Trim NO. 5

Temperature Range

-29~+425

Application

WOG

Origin

China


Material & Dimension

High Pressure Globe Valve Manufacturers


NPS          DN Class 2 2 1/2 3 4 6 8
50 65 80 100 150 200
L(RF)    L1(BW) 900LB 368 419 381 457 610 737
1500LB 368 419 470 546 705 832
2500LB 451 508 578 673 917 1022
L2(RTJ) 900LB 371 422 384 460 613 740
1500LB 371 422 473 549 711 841
2500LB 454 514 584 683 927 1038
H(Opne) 900LB 550 605 678 798 930 1230
1500LB 550 605 866 956 1260 1263
2500LB 560 720 755 1230 1791 2086
W 900LB 350 350 400 450 458 610*
1500LB 400 400 450 560 610* 610*
2500LB 400 450 560 310* 610* 760
Weight   (RF) 900LB 78 108 102 142 400 960
1500LB 85 110 135 230 660 1590
2500LB 140 168 247 620 1500 3200
Weight   (BW) 900LB 66 91 87 128 355 868
1500LB 77 101 122 209 595 1440
2500LB 100 118 180 438 1148 2594
*Manual gear operator is recommended


No Part Name Carbon steel to ASTM Alloy steel to ASTM Stainless steel to ASTM
WCB WC6 WC9  C5 CF8 CF8M CF3 CF3M
1 Body A216 WCB A217 WC6 A217 WC9 A217 C5 A351 CF8 A351 CF8M A351 CF3 A351 CF3M
2 Seat Ring A105 A182 F11 A182 F22 A182 F5 A182 F304 A182 F316 A182 F304L A182 F316L
3 Disc A105 A182 F11 A182 F22 A182 F5 A182 F304 A182 F316 A182 F304L A182 F316L
4 Stem A182 F6 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L
5 Disc nut A182 F6 A182 F304 A182 F304 A182 F316 A182 F304L A182 F316L
6 Cap SS Spiral Wound graphite or SS Spiral Wound PTFE
7 Body Seal Flexible Graphite+316
8 Adjustment Gasket F6 F6 F316
9 Stem packing Flexible Graphite+316
10 Gland Nut A194 2H A194 8
11 Gland Eyebolt A193 B7 A193 B8
12 Pin Carbon steel or Stainless Steel
13 Cap Nut Carbon steel or Stainless Steel
14 Gland A182 F6 A182 F304 A182 F316 A182 F304L A182 F316L
15 Gland Flange A216 WCB A351 CF8
16 Yoke A216 WCB A351 CF8
17 Stem Nut A439 D2 or B148-952A
18 Screw Carbon steel
19 Handwheel Ductile Iron or carbon steel
20 Name Plate Stainless steel or Aluminum
21 Washer Carbon steel
22 Nut Carbon steel or Stainless Steel

Related Knowledge

Why do we use pressure seal bonnet?


Pressure sealed bonnet are often used for valves with high design pressure. The higher the internal pressure gets, the greater the sealing force beween body and bonnet become.


For bolted bonnet valves, the body and bonnet are joined by studs and nuts with a gasket between the flange faces to facilitate sealing. However,as system pressure increases,the potential for leakage through the body and bonnet increases.

But for pressure sealed valve, “bonnet take-up bolts” to pull the bonnet up and seal against the pressure seal gasket. That is why when pressure increase, the performance of pressure seal gasket between body and bonnet becomes better.


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
1 1/2 inch CL1500 Pressure Seal Globe Valve SW
1 1/2 inch CL1500 Pressure Seal Globe Valve SW

The 1 1/2inch 1500LBglobe valve,made of A105N are best suited for throttling application at high pressure and temperature.

1 1/2 inch pressure-sealed globe valve 1500LB SW OSY
1 1/2 inch pressure-sealed globe valve 1500LB SW OSY

The 1 1/2inch 1500LB globe valve,made of one kind of alloy steel F22, is the best answer to working conditions under high pressure and temperature .

Wafer Check Valve
CF8M 20" 150LB Dual Plate Wafer Check Valve API594

20" 150LB wafer check valve is made according to API594 standard. The valve body is made of A351 CF8M. It has dual plate and built-in type structural features. Its connection mode is Wafer RF.

DBB Plug Valve
3'' 150LB API 6D Expanding Plug Valve DBB Non-Lubricated RF

The 3 inch 150LB expanding plug valves are designed for applications in which positive shutoff, verifiable zero leakage, and double block-and-bleed capabilities are required.

Stainless Steel 2 Pieces Type Ball Valve 1-1/2 Inch 800LB
Stainless Steel 2 Pieces Type Ball Valve 1-1/2 Inch 800LB

Made of F316, the floating ball valve is designed under the code of ASME B16.34. The valve consists of two-piece body, floating ball, lever operation, with good reliable sealing performance and small torque.

Wafer Check Valve
24" 150LB Dual Plate Lug Type Wafer Check Valve WCB API594

24" 150LB Wafer check valve is made according to API 594 standard. The valve body is made of WCB. It has the structural characteristics of double disc. Its connection mode is lug type.

BS 1868 Swing Type Check Valve
8 Inch Swing Check Valve 1500 LB WCB Flanged BB BS 1868

The 8 inch non return check valve conforms to BS 1868 design code, with bolted bonnet and swing type disc. The flanged check valve is made of carbon steel A216 WCB. Design Feature 1.BB: bolted bonnet 2.Swing type disc 3.Reduced bore design 4.Superior flow rates 5.Minimized friction loss 6.Standard trim material for selection 7.External or internal hinge pin available on request 8.Cylinder and counter weight available on request 9.Bare stem and actuators are available on request Quick Detail Type Check Valve Size 8'' Design Pressure ANSI 1500 Construction Bolted Bonnet, Swing Type Connection Raised Face Flange Design & Manufacture BS 1868 End to End ASME B16.10 Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material Carbon Steel Applicable Temp -29℃~+400℃ Media W.O.G. Dimension Class 1500 NPS in 2 2 1/2 3 4 6 8 10 12 DN mm 50 65 80 100 150 200 250 300 L-L1 (RF-BW) in 14-1/2 16-1/2 18-1/2 21-1/2 27-3/4 32-3/4 39 44-1/2 mm 368 419 470 546 705 832 991 1130 L2 (RTJ) in 14-5/8 16-5/8 18-5/8 21-5/8 28 33-1/8 39-3/8 45-1/8 mm 371 422 473 549 700 841 1000 1146 H (OPEN) in 12-1/4 12-1/4 13 14 15-3/4 20-7/8 22-1/16 25-5/8 mm 310 310 330 355 400 530 560 650 WT (kg) RF 69 93 140 232 490 990 1490 1970 BW 49 74 111 185 375 803 1250 1625

Socket Weld Y Strainer 1 Inch
Forged Y Type Strainer 1 Inch 1500LB SW

The 1 inch 1500LB y strainer is made of forged steel body and stainless steel 304 as the screen material. The high pressure y strainer with sw end is designed as per ASME B16.34. Design Feature 1.Forged Steel Body 2.Stainless Steel Screen 3.Customized Mesh for Screen 4.Installed Horizontally or Vertically 5.Ability to handle higher pressure Quick Detail Type Strainer Size 1'' DesignPressure 1500LB Construction Y Type Strainer, Bolted Bonnet ConnectionType SW ( Socket Weld) Design Code ASME B16.34 Face to Face ASME B16.10 End Connection ASME B16.11 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material ASME A105 ScreenMaterial SS304 TemperatureRange -29℃~+425℃ Application Water, Oil, Gas Related Knowledge What is the difference between Y strainer and basket strainer? Both y strainer and basket strainer take their name from their configurations. There are four differences between them. -First, y strainer can be installed either horizontally or vertically. But in most cases, basket strainer could only be in horizonal position. -Second, y strainer could handle higher pressure rating than basket type. -Third, for the ability to screen particulate, basket strainers are better than y strainers. -Lastly, basket strainer is easier to be cleaned than the y type strainer. In conlusion, Y-strainers are applicable for high-pressure pipelines with a low concentration of particles & solids and less cleaning needs. Vice versa for basket type strainer.

T Type Basket Strainer
Cast Steel Basket Type Strainer 1.5 Inch 150LB Flanged

The basket type strainer has 150LB design pressure and 1 1/2 inch size. The flanged strainer is made of LCC body and stainless steel screen. Quick Detail Type Strainer Size 1.5'' DesignPressure 150LB Construction Bolted Bonnet, Basket Type ConnectionType Flanged Design Code ASME B16.34 Face to Face ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material ASTM A352 LCC ScreenMaterial SS304 TemperatureRange -46℃~+345℃ Application Water, Oil, Gas Company Profile Founded in Xiamen in 2008, DERVOS VALVES INDUSTRY CO., LTD has accumulated rich experience in supplying and exporting industrial valves, from general types of gate valve, globe valve, check valve, ball valve, butterfly valve, plug valve, strainer to special valves like needle valve, control valve, relief valve, safety valve and steam trap. Dervos people are committed to provide our customers with best possible service and valve products at a competitive price. With over 500 valve suppliers, the rich resources we own enable us to find the most suitable products in a very short time for our customers. Purchasing System Dervos purchasing system plays an important role in order follow up and supplier management. What does our purchasing team do? -Confirm production plan with the factory -Follow up the order according to the production plan very closely -Take every measure to initiate all related resources to solve the delay crisis -Seek new suppliers and put them into our supplier pool by evaluating them on quality, equipment, certificates, price level, technical supports etc -Do annual evaluation on current suppliers and eliminate those unqualified ones. All these actions will make sure that clients’ order will be delivered on time and we can find most suitable products among qualified suppliers in an efficient way.

Needle Valve
1/2'' 6000PSI Needle Valve, FNPT Connection, Body SS316, ASME B16.34

1/2" 6000PSI needle valve is made according to ASME B16.34 standard. The valve body is made of SS316. It has the structural characteristics of pass-through type. Its connection mode is FNPT. And it has lever operation mode.

DN100*65 PN16 Triple Eccentric Jacketed Metal Seated Butterfly Valve, Q235B, EN593, Turbine
DN100*65 PN16 Triple Eccentric Jacketed Metal Seated Butterfly Valve, Q235B, EN593, Turbine

DN100*65 PN16 triple eccentric jacketed metal seated butterfly valve is made according to EN 593 standard. The valve body is made of Q235B. It has the structural characteristics of insulation jacket, triple eccentric, two-way 1:1 pressure test. Its connection mode is EN1092-1 B1. And it has turbine operation mode.

Plug Valves For Natural Gas Service
Three Way Plug Valve Wrench 4 Inch 150LB RF Flanged

The 3 way plug valve is made of WCB body and stainless steel trim as per API 599. The plug valve that could connect any two ports together is applicable for natural gas service, water, oil and so on. Quick Detail Type Plug Valve Size 4'' DesignPressure 150LB Construction Three Way Type Plug Valve ConnectionType Flange Connection Operation Lever/Wrench Design Code API 599 Face to Face ASME B16.10 End Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB TemperatureRange -29℃~+425℃ Application WOG Related Knowledge What are types of plug valves? Lubricated Plug Valve The plug gets lubricated by injecting sealant through injection fitting. The lubricant make sure the smooth movement and prevent the corrosion of plug. Usually, the seat of lubricated plug valve is metal, thus they can withstand higher temperature, available in larger size and higher pressure. Non-Lubricated Plug Valve A non-metallic sleeve or liner is installed in the body cavity of the plug valve. This sleeve reduce the fricion beween plug and body. Meanwhile it prevents the corrosion of plug. Due to non-metallice sleeve, the non-lubricated plug valve cannot be used in high temperature condition. Multiway Plug Valve The multiway plug valve is used for diverting flow in transfer lines. The multiway plug valves we often see are 3 way plug valve or 4 way plug valve. Dervos Packaging Based on sufficient experience, we have developed complete packing specifications and procedures to ensure clear and safe transportation so that you can receive good and sound products. And this is also an important factor that we earn good reputation from our customers.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact