English

English

Get a Quote
Products

Hot Products

Company News

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Wedge Gate Valve Design and Sealing Principle
Wedge Gate Valve Design and Sealing Principle
2026-01-30

In a wedge gate valve, the gate sealing surfaces are wedge-shaped, forming a specific angle relative to the gate centerline. The gate is driven downward by the valve stem to achieve closure. As the stem thrust increases, the normal force acting on the wedge-shaped sealing surfaces also increases, creating a forced sealing effect. This design significantly improves sealing performance under low-pressure conditions.   During opening, the gate sealing surfaces disengage from the seat immediately, which helps reduce wear on the sealing faces and extends the service life of the valve.   Applicable Standards for Wedge Gate Valves   Wedge gate valves are commonly manufactured in accordance with the following standards: ● GB/T 12234-2019 – Steel gate valves with bolted bonnet for petroleum and natural gas industries ● GB/T 12232-2005 – General-purpose flanged cast iron gate valves ● API Standard 600 (2015) – Steel gate valves for petroleum and natural gas industries   Types of Wedge Gate Valve Gates   Wedge gate valves are typically available in three gate configurations:Solid wedge gate, Flexible wedge gate, Double wedge gate.   The flexible wedge gate and double wedge gate rely on controlled deformation of the sealing surfaces to achieve improved contact with the valve seat. This design enhances sealing reliability and effectively prevents gate binding or jamming caused by temperature variations, ensuring smooth operation even under fluctuating thermal conditions.     Parallel Slide Gate Valve Design and Sealing Principle   In a parallel slide gate valve, the sealing surfaces at both the inlet and outlet ends of the gate are parallel to the gate centerline. For single-gate configurations, sealing is primarily achieved by the medium pushing a floating gate or floating seat into position. In double-gate configurations, sealing can be accomplished through springs or an expansion mechanism between the gates. Throughout the opening and closing process, the gate and seat sealing surfaces remain in constant contact, ensuring reliable sealing.   Applicable Standards for Parallel Slide Gate Valves   Common standards for parallel slide gate valves include: ● GB/T 23300-2009 – Parallel slide gate valves ● JB/T 5298-2016 – Steel parallel slide gate valves for pipelines ● API 6D – Pipeline valves for petroleum and natural gas industries   Types and Features of Parallel Slide Gate Valves   Parallel slide gate valves are available in single-gate and double-gate configurations. ● Gates may include flow-through holes or be solid. Gates with flow-through holes match the seat inner diameter, facilitating cleaning and drainage of the pipeline. ● Sealing can be configured at the inlet end, outlet end, or at both ends, depending on application requirements.   This design ensures flexibility in sealing arrangements while maintaining reliable oper...

Analysis of Valve Sealing Surface Damage Causes
Analysis of Valve Sealing Surface Damage Causes
2026-01-23

Damage to valve sealing surfaces is typically the result of multiple contributing factors, including material selection, operating conditions, operating practices, and maintenance. The following is a categorized summary of the most common causes:   1. Mechanical Damage ●  Wear: Solid particles in the medium (such as sand or welding slag) erode the sealing surface, resulting in scratches or grooves. ●  Abrasive scuffing: Frictional wear caused by relative movement of the sealing surfaces during valve opening and closing, particularly in metal-to-metal sealing pairs. ●  Impact damage: Deformation of the sealing surface caused by high-velocity fluid impingement or rapid valve opening and closing, leading to impact loading.   2. Chemical Corrosion ● Media corrosion: Acidic, alkaline, or oxidizing media directly attack the sealing surface material, such as metal corrosion caused by H₂S or chloride ions. ● Electrochemical corrosion: When sealing pairs made of dissimilar metals are exposed to an electrolyte, galvanic corrosion may occur due to electrochemical cell formation. ● Erosion–corrosion: The combined effect of corrosive media and high-velocity flow accelerates material loss on the sealing surface.   3. Thermal Damage ●Thermal fatigue:Frequent temperature fluctuations cause repeated thermal expansion and contraction of the sealing surface, leading to cracking or deformation. ●High-temperature oxidation:At elevated temperatures, the sealing surface may undergo oxidation, hardening, or burn-off, as commonly observed in steam valve applications. ●Thermal shock:Sudden exposure to high- or low-temperature media can cause cracking of the sealing surface, such as during rapid condensation or cold media ingress.   4. Improper Installation and Operation ●Installation misalignment: Incorrect valve installation or excessive piping stress can result in uneven loading on the sealing surfaces. ●Over-tightening: Excessive preload applied to the valve stem or bolting may crush or deform the sealing surface, particularly in soft-seated valves or soft sealing gaskets. ●Rough operation: Rapid opening and closing or excessive operating force can cause impact damage to the sealing surfaces.   5. Material Defects ●Improper material selection: The sealing surface material lacks sufficient resistance to process media, high temperature, or wear, such as the use of carbon steel in acidic service. ●Manufacturing defects: Defects in the hardfacing or overlay layer, including porosity, slag inclusions, or improper heat treatment, reduce wear resistance and overall sealing performance.   6. Abnormal Operating Conditions ●Cavitation / flashing: Pressure fluctuations in the fluid generate vapor bubbles that collapse and impact the sealing surface, a phenomenon commonly observed in valves installed downstream of pumps. ●Scaling / deposition: Impurities in the medium accumulate on the sealing surface, impairing tight shutoff, suc...

3 Way Ball Valves
加载中...

3 Way Ball Valve 8 Inch 150LB RF Forged Steel

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Material:

    Forged Steel Ball Valve
  • Method of Operation:

    Bare Stem
Inquiry now
Product Detail

The 3 way ball valve is designed with either two of the ports can connect together. The 8 inch multi-way ball valve has a forged steel A105N body, trunnion structure and bare stem operation, RF connection end.


Product Description

Type

Ball Valve

Size

8 Inch

Pressure

150LB

Connection

RF End

Operation

Bare Stem

Structure

Multi-Way, 3-Way, Trunnion-Mounted Ball

Body Material

ASTM A105N

Trim Material

SS316+RPTFE

Design Code

API 6D

Pressure & Temp Code

ASME B16.34

Face to Face

ASME B16.10

End Connection

ASME B16.5

Inspection

API 598

Medium

Oil, Water, Gas


Multi Way Ball Valve

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Stainless Steel Multiport Ball Valve
3 Way Ball Valve Stainless Steel T Port 3 Inch

The 3 way T type ball valve owns flange connection, gearbox, ss304 body, ball and stem. The 3 inch flanged ball valve features in its T type three way ports which could connect any pair of ports or three ports together. Quick Detail Type Ball Valve Size 3" Pressure ANSI 300 Construction Three Way Ball Valve Connection Flanged Connection Operation Mode Gearbox Body Material A182 F304 Manufacture and Design API 6D Pressure & Temp ASME B16.34 End to End Code ASME B16.10 End Connection ASME B16.5 Inspection API 6D, API 598 Temperature Range -29℃~+200℃ Medium WOG Related Knowledge What is the difference between T port and L port 3-way ball valve? Normally speaking, 3-way ball valve can be divided into T type and L type.  A T port three-way ball valve can connect any two ports, and even connect all three ports together at the same time. However, an L port three-way ball valve can only connect the center port with either side port or disconnect three ports. FAQ 1. Can the orders always be delivered on time? Our purchasing team follows up very closely with each order to make sure on-time delivery for most of orders. In 2018, more than 90% orders were delivered on time, and we are dedicated to doing better.  2. What’s the normal delivery lead time?  For normal material, usually the delivery time is about 35~40 days, and for forged material, the delivery can even be shortened to 20~25 days. We believe the short lead time can make our offer more competitive and help you secure more orders. 3.Do you have different price levels for us? With our numerous suppliers, different price levels are available with us, so we are able to help you win more customer from different markets requesting for high, medium and low prices.

DN100 PN10 3-Way Floating Ball Valve Type RF
DN100 PN10 3-Way Floating Ball Valve Type RF

The DN100 3 way ball valve is isolating valve designed to redirect the service fluid flow rather than throttling or regulating purposes. Suitable for water, steam, gas, oil, crude oil, acid, alkali and other liquids and gases without mechanical impurities.

T Port DN150 PN16 3-Way Ball Valve RF
T Port DN150 PN16 3-Way Ball Valve RF

  A three-way ball valve has three ports or openings that are connected to piping or tubing for gas or fluid flow (media) to pass through. 

Ball Valve
DN100 PN25 3-Way Floating Ball Valve RF CF8M ISO17292

DN100 PN25 ball valve is made according to ISO 17292 standard. The valve body is made of A351-CF8M. It has the structural characteristics of T-shaped, floating ball, anti-fire, anti-static, anti-flying valve stem, bi-directional. Its connection mode is RF. And it has lever with dial operation mode.

DN100 WCB Ball Valve
DIN Ball Valve DN100 PN16 WCB Floating Ball Heating Jacket

DIN Ball Valve Full Pore RF Floaing Ball Fire Proof anti-static Lever WCB Body A105+ENP Ball 17-4PH Stem F304+Ni55 Seat X750 Spring Welding Flange Heating Jacket DN100 PN16 Quick Detail Type Ball Valve Size DN100 Design Pressure PN16 Construction Floating ball valve ConnectionType Raised Face Flange OperationType Lever Body Material WCB BallMaterial A105+Ni60 Stem Material 17-4PH SeatMaterial F304+Ni55 Design Code EN12516-1 Face to Face Dimension EN558-1 End Connection EN1092-1 B1 Pressure & Temp EN12266 Medium Water, Oil and Gas Origin China

Dual Plate Wafer Check Valve
12" 600LB Dual Plate Wafer Type Check Valve WC6 API 594

Dual Plate Wafer Type Check Valve is made according to API 594 standard. The valve body is made of A217 WC6+STL. It has the structural characteristics of Dual Plate Wafer. Its connection mode is Wafer. 

Cast Steel Y Type Strainer
DN80 PN16 Cast Steel Y Type Strainer Body WCB EN12516-1

DN80 PN16 Cast Steel Y Type Strainer is made according to EN12516-1 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of Y-Type, Bolted Bonnet, Mesh 140, Wire Diameter 0.1 mm. Its connection mode is EN1092-1 B. 

 Dual Plate Wafer Type Check Valve
12” 150LB Dual Plate Wafer Type Check Valve A995 4A API594

12” 150LB Dual Plate Wafer  Check Valve is made according to API594 standard. The valve body is made of A995 4A. It has the structural characteristics of Dual-plate, wafer type. Its connection mode is LUG RF. 

 Forged Steel A105 NPT Ball Valve
DN25 PN100 Forged Steel A105 NPT Ball Valve

DN25 PN100 Forged Steel A105 NPT Connection Way 2 Pieces Construction Full Pore Lever Operation Floating Ball Fire Safety Body and Bonnet A105 Ball a182 F304 Seat Ring PTFE Stem A182 F304 Stem O Ring Viton Packing Graphite Gland Stainless Steel Design and Manufacture ASME B16.34 Face to Face Design Manufacture Standard Manufacture Standard Screw and Dimension ANSI B1.20.1 Inspection and Test API598 Fire Safety Design API 607  Quick Detail Type Ball Valve Size DN25 Pressure PN100 Construction 2 Pieces Connection NPT Operation Mode Lever Body Material A105 Cover A105 Design & Manufacture ASME B16.34 End to End ASME B16.10 End Connection  ANSI B1.20.1 Inspection API 598 Temperature Range -29℃~+538℃ Medium Oil, Water, Gas

Double Eccentric Butterfly Valve
API609, 4" 150LBS Double Eccentric Butterfly Valve, Body WCB, Lug Connection

4" 150LBS double eccentric butterfly valve is made according to API 609 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of double eccentric. Its connection mode is lug. And it has lever with lock operation mode.

Check Valve
4'' Class 300 Nozzle type Non Slam Check Valve WCB

The stainless steel non return valve features in non slam type disc, INCONEL X750 spring, WCB valve body. This valve owns an excellent dynamic performance and minimizes vibrations and noise.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact