English

English

Get a Quote
Products

Hot Products

Company News

Three Common Causes of Valve Leakage and Emergency Remedies
Three Common Causes of Valve Leakage and Emergency Remedies
2025-05-28

In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

3 Way Ball Valves
加载中...

3 Way Ball Valve 8 Inch 150LB RF Forged Steel

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Material:

    Forged Steel Ball Valve
  • Method of Operation:

    Bare Stem
Inquiry now
Product Detail

The 3 way ball valve is designed with either two of the ports can connect together. The 8 inch multi-way ball valve has a forged steel A105N body, trunnion structure and bare stem operation, RF connection end.


Product Description

Type

Ball Valve

Size

8 Inch

Pressure

150LB

Connection

RF End

Operation

Bare Stem

Structure

Multi-Way, 3-Way, Trunnion-Mounted Ball

Body Material

ASTM A105N

Trim Material

SS316+RPTFE

Design Code

API 6D

Pressure & Temp Code

ASME B16.34

Face to Face

ASME B16.10

End Connection

ASME B16.5

Inspection

API 598

Medium

Oil, Water, Gas


Multi Way Ball Valve

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Stainless Steel Multiport Ball Valve
3 Way Ball Valve Stainless Steel T Port 3 Inch

The 3 way T type ball valve owns flange connection, gearbox, ss304 body, ball and stem. The 3 inch flanged ball valve features in its T type three way ports which could connect any pair of ports or three ports together. Quick Detail Type Ball Valve Size 3" Pressure ANSI 300 Construction Three Way Ball Valve Connection Flanged Connection Operation Mode Gearbox Body Material A182 F304 Manufacture and Design API 6D Pressure & Temp ASME B16.34 End to End Code ASME B16.10 End Connection ASME B16.5 Inspection API 6D, API 598 Temperature Range -29℃~+200℃ Medium WOG Related Knowledge What is the difference between T port and L port 3-way ball valve? Normally speaking, 3-way ball valve can be divided into T type and L type.  A T port three-way ball valve can connect any two ports, and even connect all three ports together at the same time. However, an L port three-way ball valve can only connect the center port with either side port or disconnect three ports. FAQ 1. Can the orders always be delivered on time? Our purchasing team follows up very closely with each order to make sure on-time delivery for most of orders. In 2018, more than 90% orders were delivered on time, and we are dedicated to doing better.  2. What’s the normal delivery lead time?  For normal material, usually the delivery time is about 35~40 days, and for forged material, the delivery can even be shortened to 20~25 days. We believe the short lead time can make our offer more competitive and help you secure more orders. 3.Do you have different price levels for us? With our numerous suppliers, different price levels are available with us, so we are able to help you win more customer from different markets requesting for high, medium and low prices.

DN100 PN10 3-Way Floating Ball Valve Type RF
DN100 PN10 3-Way Floating Ball Valve Type RF

The DN100 3 way ball valve is isolating valve designed to redirect the service fluid flow rather than throttling or regulating purposes. Suitable for water, steam, gas, oil, crude oil, acid, alkali and other liquids and gases without mechanical impurities.

T Port DN150 PN16 3-Way Ball Valve RF
T Port DN150 PN16 3-Way Ball Valve RF

A three-way ball valve has three ports or openings that are connected to piping or tubing for gas or fluid flow (media) to pass through. 

Ball Valve
DN100 PN25 3-Way Floating Ball Valve RF CF8M ISO17292

DN100 PN25 ball valve is made according to ISO 17292 standard. The valve body is made of A351-CF8M. It has the structural characteristics of T-shaped, floating ball, anti-fire, anti-static, anti-flying valve stem, bi-directional. Its connection mode is RF. And it has lever with dial operation mode.

Body WCB, 3 150LB Cast Steel Globe Valve, RTJ Connection
Body WCB, 3" 150LB Cast Steel Globe Valve, RTJ Connection, BS1873

3" 150LB cast steel globe valve is made according to BS1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of bright pole bracket, body cover bolted connection. Its connection mode is RTJ. And it has hand wheel operation mode.

Body WCB, 8 150LB Cast Steel Globe Valve, RF Connection, Handwheel
Body WCB, 8" 150LB Cast Steel Globe Valve, RF Connection, Handwheel

8" 150LB cast steel globe valve is made according to BS 1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of straight through, rising stem, plug valve disc. Its connection mode is RF. And it has hand wheel operation mode.

Swing check valve
API 6D WCB RF Swing Type Check Valve CL600 4 inch 6 inch

API6D swing type check valve RF connnection bolted bonnet full pore WCB body, WCB+13Cr disc, A105+13Cr seat ring, WCB hinge. Suitable temperature in -29℃~+425℃ Quick Detail Type Swing Check Valve Size 4 inch-6 inch Design Pressure CL600 Construction BC, Swing type ConnectionType Flange OperationType - Body Material WCB DiscMaterial WCB+13Cr Hinge Material WCB Seat Material A105+13Cr Design Code API 6D Face to Face Dimension ASME B16.10 Test and Inspect API 598 Pressure & Temp ASME B16.34 Medium Water, Oil and Gas Origin China

Swing Check Valve
12" 600LB Swing Check Valve RF WCB API6D

12" 600LB swing check valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of swing type and external latch. Its connection mode is RF.

Handwheel 1.0619 Gate Valve
DN200 PN40 Bolt Bonnet Handwheel 1.0619 Gate Valve

Bolt bonnet Gate valve follow EN1984 design standard, raised face flanged connection, outside screw and yoke, handwheel operation, GP240GP body/bonnet/wedge material, F6a stem, metal seal/seated. Quick Detail  Type Gate Valve Size DN200 DesignPressure PN40 Construction Bolt Bonnet Gate Valve Connection Type Raised Face Flange Connection Operation Handwheel Design Code EN 1984 Face to Face DIN 3202 End Connection EN 1092-1 Test & Inspection  EN 12266-1 Body Material GP240GH Temperature Range -29~425℃ Application WOG

WCB Gate Valve PN25 DN250 Bolted Bonnet RF
WCB Gate Valve PN25 DN250 Bolted Bonnet RF

The DN250 PN25 gate valve is designed as per DIN 3352. With common parts of a valve, like bolted bonnet, outside yoke and handwheel, its body is made of WCB and STL. Valve body, bonnet,seat and other parts are promised to be traceable.

Electric Actuated Gate Valve
Stainless Steel Knife Gate Valve Lug Electric 6 Inch

The 6 inch stainless steel gate valve, designed as per MSS-SP-81, has the lug type connection per Class 150 and electric actuator. Quick Detail Type Knife Gate Valve Size 6'' Design Pressure ANSI 150 Construction Knife Type Gate Valve ConnectionType Lug Type OperationType Electric Actuator Body Material ASTM A351 CF8 TrimMaterial SS304 Design Code MSS SP81 Medium Water, Oil and Gas Origin China Related Knowledge What are knife gate valves used for? Knife gate valves are originally designed for paper industry. The knife gate valve is especially applicable for heavy liquids with solid particulates, like slurry liquid, that are most corrosive, erosive and abrasive. Compared to wedge gate valve, the knife gate valve has a shorter end to end dimension and lighter weight. Plus, the knife valve has a more sharpened disc to cut through slurry and viscous medium. Both wedge gate valve and knife gate valve can only be used for on-off function not for regulating the flow. Dervos Customer Service With Dervos customer service, you will not have any concern before, during and after buying valves. Pre-sales We will reply on time and also provide technical support upon your request. Order We will check the production details with factory and customers. Sales confirmation will also be sent. During production, we will also send weekly report to let you know the order status. Before shipment, delivery note will be sent to let you know the situation. 18 Month warranty Dervos is always responsible for their products. We will provide 18 months warranty to let our customers without concern.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact