English

English

Get a Quote
Products

Hot Products

Company News

Differences Between Wide-Body and Single-Piece Ball Valves
Differences Between Wide-Body and Single-Piece Ball Valves
2026-02-06

Wide-body ball valves and single-piece ball valves are both types of ball valves used for controlling the on/off flow of medium in pipelines.   Both wide-body and single-piece ball valves feature a one-piece (integral) body design, unlike split-body designs. This differs from two-piece and three-piece ball valves, which have segmented valve bodies.   For internally threaded wide-body ball valves, the valve body is made from round or hexagonal stock, using either bar material or forged components. The ball core features a reduced-diameter design and is inserted from one side of the valve body. The stem uses an internal anti-blowout structure. Flat surfaces are machined on both the inlet and outlet sides of the body to facilitate assembly of the ball valve and allow the use of wrenches during pipeline installation.   In wide-body ball valves, the stem stuffing box is relatively shallow, and the internal packing volume is limited, resulting in a moderate sealing performance of the stem. Therefore, these valves are more suitable for low-pressure medium applications. In contrast, two-piece and three-piece ball valves feature stem stuffing box structures that provide reliable sealing for high-pressure medium applications.   The structure of flanged wide-body ball valves is essentially the same as that of internally threaded wide-body ball valves. Typically, the flange is connected to the intermediate valve body via threaded fasteners, although some designs utilize a forged one-piece structure.   Externally threaded wide-body ball valves can use a union-type structure, where the union is directly welded to the pipeline and connects to the external threads on the valve body. This design allows for easy disassembly and reassembly during valve maintenance or replacement without requiring separate unions on the pipeline.   The valve bodies of single-piece internally threaded ball valves and single-piece flanged ball valves are manufactured using casting processes, with the ball core featuring a reduced-diameter design. The stem uses an internal anti-blowout structure. The inlet and outlet ends of single-piece internally threaded ball valves have a hexagonal shape, similar to conventional internally threaded valves, to facilitate wrench operation and secure installation.   In single-piece flanged ball valves, the flange and valve body are cast as a single unit, eliminating the need to machine and assemble the flange separately as in wide-body flanged ball valves. This approach reduces cost and simplifies the manufacturing process.   Single-piece wafer-style ball valves have a shorter valve body length, making them more suitable for pipelines with limited space.   Wide-body and single-piece ball valves both use a reduced-diameter ball design, resulting in higher flow resistance compared with two-piece and three-piece ball valves. The main differences are as follows:   Valve Body Manufacturing Process ● Wide-bo...

Wedge Gate Valve Design and Sealing Principle
Wedge Gate Valve Design and Sealing Principle
2026-01-30

In a wedge gate valve, the gate sealing surfaces are wedge-shaped, forming a specific angle relative to the gate centerline. The gate is driven downward by the valve stem to achieve closure. As the stem thrust increases, the normal force acting on the wedge-shaped sealing surfaces also increases, creating a forced sealing effect. This design significantly improves sealing performance under low-pressure conditions.   During opening, the gate sealing surfaces disengage from the seat immediately, which helps reduce wear on the sealing faces and extends the service life of the valve.   Applicable Standards for Wedge Gate Valves   Wedge gate valves are commonly manufactured in accordance with the following standards: ● GB/T 12234-2019 – Steel gate valves with bolted bonnet for petroleum and natural gas industries ● GB/T 12232-2005 – General-purpose flanged cast iron gate valves ● API Standard 600 (2015) – Steel gate valves for petroleum and natural gas industries   Types of Wedge Gate Valve Gates   Wedge gate valves are typically available in three gate configurations:Solid wedge gate, Flexible wedge gate, Double wedge gate.   The flexible wedge gate and double wedge gate rely on controlled deformation of the sealing surfaces to achieve improved contact with the valve seat. This design enhances sealing reliability and effectively prevents gate binding or jamming caused by temperature variations, ensuring smooth operation even under fluctuating thermal conditions.     Parallel Slide Gate Valve Design and Sealing Principle   In a parallel slide gate valve, the sealing surfaces at both the inlet and outlet ends of the gate are parallel to the gate centerline. For single-gate configurations, sealing is primarily achieved by the medium pushing a floating gate or floating seat into position. In double-gate configurations, sealing can be accomplished through springs or an expansion mechanism between the gates. Throughout the opening and closing process, the gate and seat sealing surfaces remain in constant contact, ensuring reliable sealing.   Applicable Standards for Parallel Slide Gate Valves   Common standards for parallel slide gate valves include: ● GB/T 23300-2009 – Parallel slide gate valves ● JB/T 5298-2016 – Steel parallel slide gate valves for pipelines ● API 6D – Pipeline valves for petroleum and natural gas industries   Types and Features of Parallel Slide Gate Valves   Parallel slide gate valves are available in single-gate and double-gate configurations. ● Gates may include flow-through holes or be solid. Gates with flow-through holes match the seat inner diameter, facilitating cleaning and drainage of the pipeline. ● Sealing can be configured at the inlet end, outlet end, or at both ends, depending on application requirements.   This design ensures flexibility in sealing arrangements while maintaining reliable oper...

Analysis of Valve Sealing Surface Damage Causes
Analysis of Valve Sealing Surface Damage Causes
2026-01-23

Damage to valve sealing surfaces is typically the result of multiple contributing factors, including material selection, operating conditions, operating practices, and maintenance. The following is a categorized summary of the most common causes:   1. Mechanical Damage ●  Wear: Solid particles in the medium (such as sand or welding slag) erode the sealing surface, resulting in scratches or grooves. ●  Abrasive scuffing: Frictional wear caused by relative movement of the sealing surfaces during valve opening and closing, particularly in metal-to-metal sealing pairs. ●  Impact damage: Deformation of the sealing surface caused by high-velocity fluid impingement or rapid valve opening and closing, leading to impact loading.   2. Chemical Corrosion ● Media corrosion: Acidic, alkaline, or oxidizing media directly attack the sealing surface material, such as metal corrosion caused by H₂S or chloride ions. ● Electrochemical corrosion: When sealing pairs made of dissimilar metals are exposed to an electrolyte, galvanic corrosion may occur due to electrochemical cell formation. ● Erosion–corrosion: The combined effect of corrosive media and high-velocity flow accelerates material loss on the sealing surface.   3. Thermal Damage ●Thermal fatigue:Frequent temperature fluctuations cause repeated thermal expansion and contraction of the sealing surface, leading to cracking or deformation. ●High-temperature oxidation:At elevated temperatures, the sealing surface may undergo oxidation, hardening, or burn-off, as commonly observed in steam valve applications. ●Thermal shock:Sudden exposure to high- or low-temperature media can cause cracking of the sealing surface, such as during rapid condensation or cold media ingress.   4. Improper Installation and Operation ●Installation misalignment: Incorrect valve installation or excessive piping stress can result in uneven loading on the sealing surfaces. ●Over-tightening: Excessive preload applied to the valve stem or bolting may crush or deform the sealing surface, particularly in soft-seated valves or soft sealing gaskets. ●Rough operation: Rapid opening and closing or excessive operating force can cause impact damage to the sealing surfaces.   5. Material Defects ●Improper material selection: The sealing surface material lacks sufficient resistance to process media, high temperature, or wear, such as the use of carbon steel in acidic service. ●Manufacturing defects: Defects in the hardfacing or overlay layer, including porosity, slag inclusions, or improper heat treatment, reduce wear resistance and overall sealing performance.   6. Abnormal Operating Conditions ●Cavitation / flashing: Pressure fluctuations in the fluid generate vapor bubbles that collapse and impact the sealing surface, a phenomenon commonly observed in valves installed downstream of pumps. ●Scaling / deposition: Impurities in the medium accumulate on the sealing surface, impairing tight shutoff, suc...

Plug Valve
加载中...

16" 150LB Double Sealed Track Plug Valve WCC RF API6D

16" 150LB plug valve is made according to API6D standard. The valve body is made of A216 WCC. It has the structural characteristics of DBB, suitable for mediums such as Naptha, Gasoline, MTBE. Its connection mode is RF.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    A216 WCC
Inquiry now
Product Detail

Product Description

Type

Double Sealed Track Plug Valve

Size

16"

Pressure

150LB

Connection

RF

Body Material

A216 WCC

Design Norm

API 6D

Face to Face

ASME B16.10

End Flange Dimensions

ASME B16.5

Pressure Test

API 6D

Pressure-Temp

ASME B16.34

Temperature

≤ 150°C

Applicable Medium

Water, Oil and Gas

Features

1. The plug valve utilizes a dual sealing system that ensures a tight seal, significantly reducing the risk of leakage in critical applications.

2. The plug valve design of the Double Sealed Track Plug Valve allows for quick and easy operation, with low fluid resistance, making it an ideal choice for applications requiring frequent valve adjustments.

Technical Drawing

Dimension Checking

Pressure Testing

Nameplate & Packing

Inspection report

Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
3 600LB Stainless Steel Globe Valve BB RTJ CF8 Hand Wheel BS1873
3" 600LB Stainless Steel Globe Valve BB RTJ CF8 Hand Wheel BS1873

3" 600LB globe valve is made according to BS1873 standard. The valve body is made of ASTM A351 CF8+STL. It has the structural characteristics of bolt cover and straight through type. Its connection mode is RTJ. And it has hand wheel operation mode.

Floating Ball Valve
3/4" 2000PSI Forged Floating Ball Valve ASTM A105N SW Lever Handle

3/4" 2000PSI Forged Floating Ball Valve is made according to BS5351 standard. The valve body is made of ASTM A105N. It has the structural characteristics of full Port, Two-piece, Floating Solid Ball, Fire-safe & Anti-static, Blow-out Proof Stem. Its connection mode is SW. And it has Lever Handle operation mode.

Triple Offset Butterfly Valve
30 Inch Triple Offset Butterfly Valve Metallic Seat Gearbox

You can found this valve in a various high performance applications such as steam, chilled water, gasoline, oil, jet fuels, natural gas, utility lines, process lines and in industries.

 Forged Steel A105 NPT Ball Valve
DN25 PN100 Forged Steel A105 NPT Ball Valve

DN25 PN100 Forged Steel A105 NPT Connection Way 2 Pieces Construction Full Pore Lever Operation Floating Ball Fire Safety Body and Bonnet A105 Ball a182 F304 Seat Ring PTFE Stem A182 F304 Stem O Ring Viton Packing Graphite Gland Stainless Steel Design and Manufacture ASME B16.34 Face to Face Design Manufacture Standard Manufacture Standard Screw and Dimension ANSI B1.20.1 Inspection and Test API598 Fire Safety Design API 607  Quick Detail Type Ball Valve Size DN25 Pressure PN100 Construction 2 Pieces Connection NPT Operation Mode Lever Body Material A105 Cover A105 Design & Manufacture ASME B16.34 End to End ASME B16.10 End Connection  ANSI B1.20.1 Inspection API 598 Temperature Range -29℃~+538℃ Medium Oil, Water, Gas

Body WCB, 8 150LB Cast Steel Globe Valve, RF Connection, Handwheel
Body WCB, 8" 150LB Cast Steel Globe Valve, RF Connection, Handwheel

8" 150LB cast steel globe valve is made according to BS 1873 standard. The valve body is made of ASTM A216 WCB+STL. It has the structural characteristics of straight through, rising stem, plug valve disc. Its connection mode is RF. And it has hand wheel operation mode.

Butterfly Valve
DN1350 4 Bar Concentric Butterfly Valve GGG40 API609 G.O

DN1350 4 Bar butterfly valve is made according to API 609 standard. The valve body is made of GGG40. It has the structural characteristics of midline type. Its connection mode is flange connection according to AWWA C207 Class D. And it has gearbox operation mode.

Gate Valve
Cast Steel DN400 PN16 Bare Stem Gate Valve BB RF OS&Y

DN400 PN16 gate valve is made according to EN1984 standard. The valve body is made of 1.0619 + STL. It has the structural characteristics of rising stem and structural length of 600mm.

Globe Valve
DN15 PN160 T Pattern Globe Valve SW Alloy Steel

Quick Detail Type Globe Valve Size DN15 DesignPressure PN160 Construction Tee Pattern Connection Socket Welded Design & Manufacture BS5352 Socket Weld ANSI B16.11 Test & Inspection  EN12266 Body Material A182 F5+STL Trim Material A276 410; STL Media WOG   Description --Tee Pattern is the most common type of globe valve with a z shaped diaphragm. --The seat is oriented horizontally allowing the stem and disk to travel perpendicular to the horizontal line. This alsocontribute to low flow coefficient and higher pressure drop.   Features --Good shutoff capability --Moderate to good throttling capability --Shorter stroke (compared to a gate valve) --Available in tee,WYE, and angle patterns, each offering unique capabilities --Easy to machine or resurface the seats --With disc not attached to the stem, valve can be used as a stop-check valve   Technical Drawing Dimension Check Witnessing Tests Nameplate & Packing FAQ 1.Can the ordersalways be delivered on time? Our purchasingteam follows up very closely with each order tomake sure on-time delivery for most of orders. In 2018,more than 90% orders were delivered on time, and we are dedicated to doing better.   2.What’s the normal delivery lead time? For normal material, usually the delivery time is about 35~40 days, and for forged material, the delivery canevenbe shortened to 20~25 days. We believe the short lead time can make our offer more competitive and help you secure more orders.   Do you have different price levels for us? With our numerous suppliers, different price levels are available with us, so we are able to help you win more customer from different markets requesting for high, medium and low prices. About Dervos Xiamen Dervos Valves Industry Co.,Ltd (stock code 861601), founded in June 2008, is a one-stop industrial valves supplier integrated of R&D, manufacture, resource integration, and trade service. For 12 years, Dervos has been committed to finding solutions for industrial needs and providing professional service for both general and specialized valves.

Wafer Check Valve
API594 20" 600LB Dual Plate Wafer Check Valve LCC

20" 600LB wafer check valve is made according to API 594 standard. The valve body is made of A352 LCC. It has the structural characteristics of double plate and built-in type. Its connection mode is double flange RF.

3 150LB Cast Stainless Steel Check Valve CF3M RF BS1868
3" 150LB Cast Stainless Steel Swing Check Valve CF3M RF BS1868

3" 150LB Cast Stainless Steel Check Valve is made according to BS1868 standard. The valve body is made of CF3M+STL6. It has the structural characteristics of Ball Check, Swing Type. Its connection mode is RF ,S-10S, 125:250AARH.    Product Parameters   Type Cast Steel Check Valve Size 3” Pressure 150LB Connection RF Body Material CF3M+STL6 Design Norm BS1868 Face to Face ASME B16.10 Flange ASME B16.5 Test & Inspection Code API 598 Temperature -29 ~ 300°C Applicable Medium Water, Oil and Gas Features 1.Made from CF3M cast stainless steel, providing excellent corrosion resistance and durability for 150LB pressure systems. 2.Floating ball design with RF flange, compliant with BS1868, ensures reliable sealing and smooth operation. Technical Drawing Cast Steel Swing Check Valve Dimension Checking Pressure Testing Nameplate & Packing Inspection Report

10 150LB Swing Check Valve, RF Connection, Body WCB, API 6D
10" 150LB Swing Check Valve, RF Connection, Body WCB, API 6D

10" 150LB swing check valve is made according to API 6D standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of swing type, built-in type, fully open. Its connection mode is RF.

Plug Valve
1" 600LB Inverted Pressure Balance Lubricated Plug Valve API 6D

1" 600LB plug valve is made according to API 6D standard. The valve body is made of A105. It has the structural characteristics of oil sealed and full bore. Its connection mode is FNPT. And it has handle (with locking device) operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact