English

English

Get a Quote
Products

Hot Products

Company News

Check Valve Maintenance: When to Replace and How to Fix Common Issues
Check Valve Maintenance: When to Replace and How to Fix Common Issues
2025-11-06

A check valve is a critical device that prevents backflow, widely used in water treatment, oil & gas pipelines, chemical processing, and steam systems.   After long-term operation, check valves may experience issues such as leakage, vibration noise, or sticking. If not addressed promptly, these problems can reduce system efficiency and even cause equipment damage or safety hazards.   So, how can you tell if a check valve needs replacement? Which faults can be repaired, and which require a full replacement? This article provides a systematic guide.   1. Basic Operating Principle of Check Valves   The primary function of a check valve is to automatically prevent backflow. When fluid flows in the intended direction, the valve disc is pushed open by pressure; when flow reverses, the disc closes automatically, using either its own weight or a spring, preventing backflow.   Common types include: Lift Check Valve Swing Check Valve Dual Plate Wafer Check Valve Ball Check Valve    Although their designs vary, the key criteria for determining whether a check valve needs replacement remain the same: sealing performance, operational smoothness, and structural integrity.   2. How to Determine if a Check Valve Needs Replacement   Visible Leakage (Internal or External) If fluid continues to flow backward when the valve is closed, it indicates significant wear or deformation of the sealing surfaces, preventing an effective seal. If the leakage exceeds system tolerances and cannot be corrected by cleaning or resurfacing, the valve or its sealing components should be replaced.   Sticking or Inflexible Valve Disc After long-term operation, the valve stem, guides, or disc may become stuck due to scaling, corrosion, or debris. If cleaning, descaling, or lubrication fails to restore smooth operation, replacement is recommended.   Excessive Noise or Vibration Frequent opening and closing or rapid disc rebound can cause vibration or knocking sounds. This is usually due to spring failure, loose valve components, or worn guides. Persistent or frequent noise should trigger inspection of the valve’s structural integrity and consideration for replacement.   Corroded or Cracked Valve Body or Cover Exposure to acidic, alkaline, or high-temperature fluids can corrode or crack the valve body, compromising structural strength and posing safety risks. Such damage cannot be repaired and requires full valve replacement.   Frequent Backflow or Abnormal System Pressure Fluctuations Poor sealing or delayed valve response can cause system pressure variations, including water hammer. If repeated adjustments do not resolve the issue, it indicates aging of the internal spring or disc mechanism, necessitating timely replacement.   3. Common Fault Diagnosis and Solutions   Fault: Valve fails to close completely, causing backflow Cause: Worn sealing surfaces, deformed disc, or trapped debris Solution: Remove ...

What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
What Are the Differences Between Flanged Globe Valves and Threaded Globe Valves?
2025-10-31

If you’ve ever hesitated between choosing a flanged or threaded globe valve, you’re not alone. Globe valves are common shut-off valves widely used in industries such as oil and gas, chemical processing, power generation, shipbuilding, and water treatment. While both connection types can control fluid flow, they differ significantly in terms of installation method, sealing performance, and suitable applications. This article will provide a systematic comparison of flanged and threaded globe valves from the perspectives of structure, performance, and application.   I. Fundamental Difference in Connection Methods   1.Flanged Globe Valve A flanged globe valve connects to the pipeline through flanges, with bolts tightening the flange faces together to ensure a secure seal.This connection type offers excellent strength and reliability, making it ideal for medium to high-pressure, large-diameter, and frequently operated systems.In industrial applications, typical sizes range from DN50 to DN300, and flange dimensions generally follow international standards such as ANSI, DIN, or JIS.   2. Threaded Globe ValveA threaded globe valve typically uses either internal (NPT/BSP) or external threads to connect to the pipeline, relying on the threads themselves for sealing.This compact and lightweight structure allows for easy installation and is mainly used in small-diameter (usually ≤ DN50) and low-pressure systems, including residential pipelines.Because it does not require welding or flange gaskets, a threaded valve is more cost-effective in both installation and maintenance.     II. Comparison of Sealing Performance and Maintenance   Flanged Globe ValveFlanged globe valves typically use metal or flexible graphite gaskets for sealing, offering excellent resistance to high temperature, high pressure, and corrosion.During long-term operation, maintenance or valve replacement is straightforward—simply loosen the flange bolts to disassemble the valve.   Threaded Globe ValveThe sealing of a threaded globe valve mainly depends on the thread engagement and sealing materials such as PTFE tape or sealing paste.However, repeated disassembly can damage the threads and increase the risk of leakage.For this reason, threaded globe valves are better suited for fixed installations, clean fluids, and low-pressure systems.     III. Structural Dimensions and Installation Requirements   Flanged Globe ValveFlanged globe valves are larger in size and require more installation space, but they provide superior vibration resistance and pressure tolerance.They are commonly used in industrial piping networks or pump station systems where sufficient structural support is available.   Threaded Globe ValveThreaded globe valves feature a compact design, making them ideal for confined spaces or lightweight piping systems such as laboratories, compressor inlets and outlets, and domestic water supply lines.However, thr...

Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
Valve Market 2025: Smart Upgrades and Infrastructure Investment Drive Global Growth
2025-10-24

The global industrial valve market is undergoing a quiet yet significant transformation. Growth is no longer driven mainly by new construction projects — instead, it’s increasingly fueled by the replacement and modernization of aging equipment and infrastructure. From petrochemical plants to municipal water systems and natural gas pipelines, valve upgrades have become a key priority across industries.   Aging Equipment Drives Rising Valve Replacement Demand   In many industrial facilities, valves—though seemingly durable—gradually suffer from seal wear, sluggish operation, and leakage after years of service. For plants operating over a decade, valve degradation has become a major factor affecting safety and efficiency.   With stronger focus on maintenance, process safety, and energy efficiency, end users in oil & gas, power, and water treatment sectors are accelerating valve replacement and upgrade projects. This trend aligns with a global shift toward predictive maintenance and sustainable operations, increasing demand for ball valves, gate valves, and control valves.   Market research from Mordor Intelligence and others shows a shorter valve replacement cycle due to rising maintenance costs and downtime risks. Stricter environmental and safety standards are also pushing faster modernization worldwide. In the U.S., for example, the water sector—with pipelines averaging over 40 years old—is investing in large-scale valve renewal programs to reduce leakage and unplanned shutdowns. Similar initiatives are emerging across Europe and Asia.   Infrastructure Investment Fuels Market Expansion   Beyond replacements, ongoing infrastructure investment continues to drive valve demand globally. Asia’s rapid industrial growth and the Middle East’s refining and petrochemical expansion have led to increased valve procurement.   According to GMI Insights, the global industrial valve market reached USD 75.9 billion in 2024 and is projected to hit USD 142.6 billion by 2034 (CAGR: 6.6%). Precedence Research forecasts even higher potential—up to 12.5% CAGR.   This growth is backed by large-scale upgrades in urban water networks, wastewater treatment plants, natural gas pipelines, and energy transition projects such as hydrogen and carbon capture systems, all requiring next-generation high-performance valves.   Valve Replacement Becomes a Smart Technology Upgrade   Modern valves are evolving beyond mechanical parts. With smart manufacturing and the Industrial Internet of Things (IIoT), today’s valves feature sensors, smart actuators, and remote monitoring. Engineers can now track performance in real time and conduct predictive maintenance, reducing unexpected downtime.   Advanced materials like corrosion-resistant alloys, cryogenic steels, and special polymers are extending service life and reliability—especially in harsh environments. For indu...

Tilting Disc Check Valve
加载中...

10" 150LB Tilting Disc Check Valve WCB Wafer API6D

10" 150LB tilting disc check valve is made according to API 6D standard. The valve body is made of A216 WCB+SS316. It has the structural characteristics of swash plate type. Its connection mode is wafer.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    A216 WCB+SS316
Inquiry now
Product Detail

Product Description

Type

Check Valve

Size

10"

Pressure

150LB

Connection

Wafer

Body Material

A216 WCB+SS316

Design Norm

API 6D

Face to Face Dimensions

API 6D

End Flange Dimensions

ANSI B16.5

Test & Inspection Code

API 598

Temperature

-29 ~ 400°C

Applicable Medium

Water, Oil and Gas

Features

1. Effectively preventing media backflow and protecting the safe operation of pipeline systems and equipment;

2. When the direction of medium flow changes, the valve disc can quickly close to prevent medium backflow and maintain the normal flow direction of the pipeline system.

Technical Drawing

Dimension Checking

Pressure Testing

Nameplate & Packing

Inspection report



Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
2500LB High Pressure Non Return Valve
Pressure Seal Tilting Disc Check Valve 12 Inch 2500LB

The 12 inch high pressure check valve is designed with pressure seal bonnet, RTJ flange, tilting disc, made of carbon steel WCB body and hard face sealing. Quick Detail Type Check Valve Size 12'' DesignPressure 2500LB Construction Pressure Seal Bonnet, Tilting Disc Type Connection RTJ Flange Design & Manufacture ASME B16.34 End to End ASME B16.10 Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A216 WCB Trim Material 13CR+STL Temp Range -29℃~+350℃ Media W.O.G. Product Range Body Material Range: WCB, WCC, WC1,CF8M, CF8, CF3, CF3M, LCB, LCC Size Range: 2”~60” (DN50~DN1500) End Connection Type: Flange End, Weld End Design Pressure Range: 150lbs~600lbs  Temp Range: -46℃~ +425℃ Related Knowledge What is a tilting disc check valve? The disc of a tilting disc check valve has a pivot point at the center of it. It is desinged to overcome weaknesses of general type swing check valve. Compared to swing type check valve, the tilting check valve could remain fully open and steady at lower flow rates. That is to say, the swing check valve needs a high velocity of fluid to keep disc open and a higher cracking pressure. For low pressure situation, the pressure drop of a tilting disc check valve is much lower than the swing type. But at a higher flow rate, the tilting check valve has higher pressure drop than swing type.

Check Valve
DN250 PN10 Tilting Disc Check Valve RF WCB API598

DN250 PN10 check valve body is made of A216 WCB+STL. It has the structural characteristics of heavy hammer on both sides and flange type. Its connection mode is RF.

Tilting Disc Check Valve
RF Connection, 3" 150LB Tilting Disc Check Valve, Body CF8M, API6D

3" 150LB tilting disc check valve is made according to API 6D & BS1868 standard. The valve body is made of ASTM A351 CF8M. It has the structural characteristics of tilting disc type, bolt cover. Its connection mode is RF.

Butterfly Valve
DN300 PN10 Concentric Butterfly Valve FF API609

DN300 PN10 butterfly valve is made according to API 609 standard. The valve body is made of GGG40. It has the structural characteristics of centerline and structural length of 78mm. Its connection mode is FF. And it has turbine operation mode.

1/2 PN160 Forged Steel Globe Valve, FNPT, Body A105N, API602
1/2" PN160 Forged Steel Globe Valve, FNPT Connection, Body A105N, API602

1/2" PN160 forged steel globe valve is made according to API 602 standard. The valve body is made of ASTM A105N+STL. It has the structural characteristics of plug cover and plug valve disc. Its connection mode is FNPT. And it has handwheel operation mode.

2 150LB Y Strainer LCB ASME B16.34 RF
2" 150LB Y Strainer LCB ASME B16.34 RF

2" 150LB Y Strainer is made according to ASME B16.34 standard. The valve body is made of LCB. It has the structural characteristics of Y-Type, Double Mesh Screen, Mesh Size 1/16", Hole Pitch 3/32". Its connection mode is RF. 

API594 Dual-Plate WAFER Check Valve WCB 300LB
API594 Dual-Plate WAFER Check Valve WCB 300LB

The 10 inch Dual-Plate WAFER Check Valve is made of WCB and is eligible to be put under pressure up to 30LB. All Dervos check valves are tested to API 598 and must meet or exceed all applicable API, ANSI and ASTM Standards.

Inverted Pressure Balanced Lubricated Plug Valve
API6D, 2" 600LB Inverted Pressure Balanced Lubricated Plug Valve, RF, WCB, Lever

2" 600LB inverted pressure balanced lubricated plug valve is made according to API 6D standard. The valve body is made of A216 WCB. It has the structural characteristics of inverted pressure balance type, oil sealed. Its connection mode is RF. And it has Lever operation mode.

Plug Valve
2" 900LB Lubricated Plug Valve RF 5A API6D Lever

2" 900LB plug valve is made according to API 6D standard. The valve body is made of A995 5A. It has the structural characteristics of oil sealed and full bore. Its connection mode is RF. And it has lever operation mode.

Swing Check Valve
2" 800LB Swing Check Valve Body A105N FNPT API602

2" 800LB Swing Check Valve is made according to API 602 standard. The valve body is made of ASTM A105N. It has the structural characteristics of Bolted Bonnet, Swing Type. Its connection mode is FNPT.

Gate Valve
3/4" 1500LB Forged Steel Gate Valve SW A105N API602 Handwheel

3/4" 1500LB gate valve is made according to API602 standard. The valve body is made of ASTM A105N. It has the structural characteristics of body cover welding. Its connection mode is SW. And it has handwheel operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact