English

English

Get a Quote
Products

Hot Products

Company News

Three Common Causes of Valve Leakage and Emergency Remedies
Three Common Causes of Valve Leakage and Emergency Remedies
2025-05-28

In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

Wellhead Gate Valve PSL3 PR2 EE
加载中...

API 6A Wellhead Gate Valve PR2 PSL3 10000PSI

  • Payment:

    30% T/T When Order, 70% T/T Before Shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai China
  • Lead Time:

    35~60 days Ex Works After Order Confirmation
  • Material:

    Carbon Steel Gate Valve, Forged Steel Gate Valve
  • Method of Operation:

    Handwheel Gate Valve
Inquiry now
Product Detail
Made of carbon steel, the 4 1/16" wellhead gate valve is designed per API 6A with RTJ flange, non rising stem, parallel gate as its features.


Design Feature
1.Full port design for small flow resistance
2.Small torque value for easy operation
3.No limitation for flow direction
4.Parellel disc
5.Self-tightening seal packing minimizes maintenance
6.Metal to metal seat for stem and wedge
7.Compact structure with light weight


Quick Detail

Type

Wellhead Gate Valve

Size

4.1/16"

Nominal Pressure

10000PSI

Construction

Parallel Gate, Non-Rising Stem

Connection

Flange

Operation

Handwheel Operation

Body Material

ANSI 4130

Trim Matetial

SS410

Material Class

EE

TempretureClass

P-U

ProductSpecificationLevel

PSL3

PerformanceRequirement

PR2

Medium

Water, Oil and Gas

Origin

China


Product Application
Dervos valves can be widely used in varieties of industries, such as petrochemical, pipeline, oil & gas, marine, water treatment, power station industries and etc.


Wellhead Gate Valve Manufacturers


Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Gate Valve
API602, 3/4" 800LB Forged Steel Gate Valve, Body A105N, SW Connection, Handwheel

3/4" 800LB forged steel gate valve is made according to API 602 standard. The valve body is made of A105N. It has the structural characteristics of bolt cover, rising stem, OS&Y, reduced diameter. Its connection mode is SW. And it has hand wheel operation mode.

2 X 3 600LB X 150LB Spring Loaded Safety Valve, RF Connection, Body WCB, API520
2" X 3" 600LB X 150LB Spring Loaded Safety Valve, RF Connection, Body WCB, API520

2" X 3" 600LB X 150LB spring loaded safety valve is made according to API 520 / ASME VIII standard. The valve body is made of WCB. It has the structural characteristics of fully open, spring loaded, suitable for media: hydrocarbons, channel diameter code H. Its connection mode is RF(ASME B16.5).

Lift Check Valve
DN50 PN160 Spring Loaded Lift Check Valve Cast Steel

The DN50 PN160 spring loaded lift check valve, made of Cast Steel, is powered by flow and differential pressure with assistance from spring pressure. And it requests no human intervention is required to function, easy to use.

Bellow Seal Globe Valve PN40
Cast Steel Bellow Seal Globe Valve DN65 PN40 1.0619

Dervos bellow seal globe valve is designed as per EN13709 with face to face dimesnsion per EN558. The special designed bellow seal make sure zero leakage from stem. Quick Detail Type Globe Valve Norminal Size DN 65 NorminalPressure PN 40 Construction Bolted Bonnet, Rising Stem, Bellow Sealed ConnectionType RF Flange Operation Handwheel Design Code EN13709 Face to Face EN 558 Connection EN1092 Test & Inspection EN12266 Body Material Carbon Steel 1.0619 Bellow Material SS304, SS316, SS316L and etc ApplicableTemp -29℃~+420℃ Application Water, Oil, Gas Structure Feature 1. Standard design of double-wall bellow seal 2. Heat-dissipating bonnet design; 3. With lubricant storage device; 4, With design of circlip to fix stem nut; 5. Reasonable product structure, reliable sealing performance and good appearance; 6. The sealing surface is welded with Co-based hard alloy, which has good wear resistance, corrosion resistance, anti-friction performance and long service life; 7. Stem has nitriding treatment with good corrosion resistance and anti-friction performance; 8. With position indicator for stem movement;

Stainless Steel CF8 Check Valve
Stainless Steel Non Slam Swing Check Valve 8 Inch 150L

The stainless steel CF8 non return valve features in non slam type disc, ANSI 150 flange end, and full port design.  Quick Detail Type Non Return Valve ( Check Valve) Size 8'' DesignPressure Class 150 Construction Non Slam Type Connection RF Flange Design & Manufacture ASME B16.34 End to End ASME B16.10 Connection ASME B16.5 Pressure & Temp ASME B16.34 Test & Inspection API 598 Body Material A351 CF8 Trim Material SS304 Media W.O.G. Available Modifications for Dervos Valves -Valve Pressure -Valve Size -Reduced Bore & Full Bore -Body & Trim Material (Disc, Seat, Pin, Spring) -End Connection (Flange, BW, SW, Thread, Wafer, Lug) -Available Operation (Bare Stem, With Actuators) -Available Counterweight -Available Cylinder -Customizing Coating -Customizing Packaging Related Knowledge What is non-slam check valve? Water hammer is a hydraulic phenomenon that undergoes an abrupt change in its rate of flow and are caused by sudden shutting or slamming. Water hammer will reduce process efficiency, cause valve damage, gasket joint leaks and other problems. The non-slam check valve is designed to reduce water hammer. An internal spring can prevent the disc from slamming close.The design of a non-slam check valve could eliminate pressure flutuations, vibration and damges. Plus, the disc and spring experience minimal wear over time, which will largely extend the service lives of non-slam check compared to swing check valve.

Dual Plate Wafer Check Valve API 594 DN250 10K
Dual Plate Wafer Check Valve API 594 DN250 10K

The double-disc check valve, made of A395 D1, has excellent resistance to corrosion. Designed in accordance with API594, the check valve is connected to pipes with WAFER. This valve is eligible to be put in marine working conditions.

Strainer
3" 1500LB Y Type Strainer WCB RTJ ASME B16.34 BC

3" 1500LB strainer is made according to ASME B16.34 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of plug with DN20 blind flange. Its connection mode is RTJ.

Stainless Steel 2 Pieces Type Ball Valve 1-1/2 Inch 800LB
Stainless Steel 2 Pieces Type Ball Valve 1-1/2 Inch 800LB

Made of F316, the floating ball valve is designed under the code of ASME B16.34. The valve consists of two-piece body, floating ball, lever operation, with good reliable sealing performance and small torque.

Floating Ball Valve
RF Connection, 1 1/2" 150LB Floating Ball Valve, 2 PCS Forged Steel, Body A105

1 1/2" 150LB floating ball valve is made according to ASME B16.34 standard. The valve body is made of A105. It has the structural characteristics of 2-piece, floating ball, full bore, fireproof, anti-static, anti-flying valve stem. Its connection mode is RF. And it has lever (with locking device) operation mode.

Strainer
8" 150LB Cast Steel Y Type Strainer RF CF3M ASME B16.34

8" 150LB strainer is made according to ASME B16.34 standard. The valve body is made of CF3M. It has the structural characteristics of Y type. Its connection mode is RF.

Gate Valve
Pressure Seal Gate Valve 2 Inch 4500 LB SW API 602

The high-pressure Class 4500 gate valve is designed with PSB and SW end connection. Made of CS A105, the 2 inch gate valve follows the inspection standard API 598 and design standard API 602. Dervos could offer customizing service by providing clients with valves in different sizes, materials, standards, design pressure, structure, operation type and connection type.

Forged Steel Globe Valve
SW Connection, 1" 800LB Forged Steel Globe Valve, Body A105N, API602, Handwheel

1" 800LB forged steel globe valve is made according to API 602 standard. The valve body is made of A105N. It has the structural characteristics of bolt cover. Its connection mode is SW. And it has hand wheel operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact