English

English

Get a Quote
Products

Hot Products

Company News

Three Common Causes of Valve Leakage and Emergency Remedies
Three Common Causes of Valve Leakage and Emergency Remedies
2025-05-28

In industrial production, valves are critical components for fluid control, and their sealing performance directly impacts system safety and stability. Leakage not only reduces operational efficiency but may also lead to fluid escape, posing serious safety risks. This article outlines three common causes of valve leakage and provides corresponding emergency response recommendations to help you quickly identify issues, take action, and mitigate risks.   1. Seal Surface Wear or Damage   Cause: During long-term operation, sealing pairs (e.g., valve seat and disc, valve ball and seat) suffer from media erosion, particle abrasion, or corrosion, leading to uneven sealing surfaces and resulting in minor or significant leakage. Emergency Measures: · Minor Leakage: Adjust compression force (e.g., tighten bonnet bolts) to temporarily reduce leakage. · Severe Leakage: Immediately shut down the system to replace or regrind sealing components; replace the entire valve if necessary. Prevention Recommendations: Conduct regular inspections, select valves with appropriate materials and wear-resistant designs. For media containing solid particles, use hard-sealing structures.   2. Packing Aging or Gland Loosening   Cause: Valve stem sealing uses packing materials (e.g., graphite, PTFE), which may age, dry, or crack over prolonged use. Temperature fluctuations can also cause gland loosening, leading to leakage at the packing box.  Emergency Measures: · Tighten packing gland bolts to increase packing compression. · If ineffective, add or replace packing material. · Avoid over-tightening to prevent increased operating torque or stem damage. Prevention Recommendations: Regularly replace packing; select materials compatible with the media and operating temperature. For critical equipment, consider spring-loaded packing glands.   3. Casting Defects or Corrosion Perforation in Valve Body/Bonnet   Cause: Some low-quality valves have casting defects such as sand holes or shrinkage cavities. Prolonged exposure to corrosive media can cause localized perforation of the valve body, resulting in uncontrollable leakage. Emergency Measures: · For small leaks, temporary repairs using metal adhesives or cold welding are possible. · Large-scale damage requires immediate valve replacement. · For high-pressure or toxic/hazardous media, no pressurized repair is allowed; follow shutdown procedures strictly.  Prevention Recommendations: Purchase valves from reputable manufacturers; use corrosion-resistant materials (e.g., 304/316L stainless steel). Perform regular wall thickness inspections on critical pipelines.   Common Questions & Answers (Q&A)   Q1: Can all valve leaks be fixed by replacing packing?A: No. Packing replacement is effective only when leakage is due to packing aging or gland loosening. If the leakage stems from seal surface or valve body damage, other me...

Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
Can Oil Pass Through a Strainer? How Pre-Filtration Works in Lubrication Systems
2025-05-20

In any efficient and reliable lubrication system, oil cleanliness is a core factor affecting equipment lifespan and operational efficiency. Strainers, as the front-line filtration devices in lubrication systems, play a critical role in pre-filtration. However, engineers and operators often raise the following questions: Can oil pass through strainers smoothly? What exactly is the function of a strainer? How does it differ from subsequent fine filters?   This article systematically explains the role of strainers in lubrication systems, covering their working principles, pre-filtration objectives, and practical applications across different systems.   1. Can Oil Pass Through a Strainer?   Answer: Yes, but with limitations.   (1) Strainer Structure Allows Oil Flow A strainer is fundamentally a low-precision filter made of stainless steel mesh or perforated metal plates. It features uniform pores, typically sized between 80–500 μm (micrometers), allowing most clean oil to flow through unimpeded.   (2) Contaminants Are Blocked Particles such as metal shavings, seal fragments, and carbon deposits in the oil are intercepted by the strainer, preventing them from entering the oil pump or other critical components.   (3) Oil Temperature and Viscosity Affect Flow Efficiency Low temperatures or high-viscosity oil may reduce flow rates or even cause blockages. This is one reason for low oil pressure during system startup.   2. Objectives and Significance of Pre-Filtration   (1) Protecting the Oil Pump Internal pump components (gears, impellers, or plungers) are highly sensitive to solid particles. Pre-filtration prevents particles from entering the pump, avoiding premature wear or seizure.   (2) Reducing Load on Primary Filters By intercepting large contaminants, strainers allow primary filters (e.g., oil filter cartridges) to focus on finer impurities, extending their service life and maintaining stable system flow.   (3) Lowering System Failure Rates Pre-filtration reduces risks such as pump failure, orifice blockages, and lubrication breakdown caused by foreign particles, enhancing overall system reliability.   3. Typical Applications of Pre-Filtration Devices   Application System Strainer Installation Position Strainer Type Internal Combustion Engine Lubrication Oil sump → Pump inlet Coarse metal strainer Hydraulic Systems Tank outlet → Pump suction port Suction strainer or basket strainer Turbine Lubrication Systems Pump inlet Dual-chamber switchable suction strainer Transmission/Clutch Systems Oil sump → Circulation pump inlet Perforated plate + magnetic strainer   4. Design and Usage Considerations for Strainers   (1) Pore Size Selection Must Align with System Precision Requirements 80–100 μm: Typical for engine oil systems. 150–300 μm: Used in hydraulic equipment. >400 μm:  Suitable for low-pressure or open-loop systems.   (2...

Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
Are Ball Valves Suitable for Water Systems? A Practical Guide for Engineers & Installers
2025-04-30

Ball valves, with their simple structure, easy operation, and excellent sealing performance, have become widely used control components in both industrial and residential sectors. Particularly in water supply systems, an increasing number of engineers and installers are choosing ball valves as the primary fluid control device. But are ball valves truly suitable for water systems? How should one properly select and install them to ensure long-term stable operation? This article provides a comprehensive overview from the perspectives of structural principles, performance characteristics, and application recommendations. 1. Advantages of Ball Valves in Water Systems (1) Quick Opening and Closing Ball valves can complete the opening and closing operation with a simple 90° rotation, making them easy to operate and highly responsive—ideal for emergency situations or water systems that require frequent switching.   (2) Excellent Sealing Performance High-quality ball valves are equipped with PTFE or reinforced sealing materials, enabling zero leakage. They are particularly suitable for water supply systems in residential buildings, commercial complexes, and industrial facilities where sealing performance is critical.   (3) Compact Structure and Space-Saving Compared to gate valves or globe valves, ball valves occupy less space and offer flexible installation, making them ideal for water modules with high equipment integration.   (4) Strong Corrosion Resistance Ball valves made of stainless steel, brass, or plastic materials (such as UPVC) offer excellent corrosion resistance, capable of handling various water qualities (soft water, hard water, reclaimed water) and different additives.   2. Application Scenarios Analysis Ball valves are suitable for the following types of water systems: (1) Domestic Water Systems: Such as internal building water supply, point-of-use control for sanitary fixtures, and garden irrigation systems. (2) Industrial Water Systems: Such as cooling water circulation systems, boiler feedwater systems, and water supply for cleaning equipment. (3) Water Treatment Systems: Including reverse osmosis pretreatment, greywater recycling, and wastewater transfer processes. (4) Special Applications: High-pressure hot water systems or cleaning water containing chemical additives.   However, caution should be exercised in the following scenarios: (1) High-Frequency Modulation Conditions Standard ball valves are not suitable for precise flow regulation. It is recommended to use V-port ball valves or control-type electric ball valves. (2) Water Containing Sand, Gravel, or High Levels of Suspended Solids A Y-strainer should be installed to prevent particle blockage or damage to the sealing surfaces. (3) High-Temperature Hot Water Systems High-temperature ball valves with metal sealing structures should be selected to prevent seal aging and deformation.   3. Key Selection Criteria To ensure stable operation o...

4 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M
加载中...

4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M

4" 150LB gate valve is made according to API 603 standard. The valve body is made of ASTM A351 CF8M+STL. It has the structural characteristics of bolt cover, elastic wedge and rising stem. Its test and inspection conform to API 598, and its operation mode is handwheel operation.

  • Payment:

    30% when order confirmed, 70% before shipment
  • Product Origin:

    China
  • Color:

    Customization
  • Shipping Port:

    Shanghai, China
  • Lead Time:

    30~60 days Ex Works after order confirmation
  • Material:

    ASTM A351 CF8M+STL
  • Method of Operation:

    HW-OP
Inquiry now
Product Detail

Product Description

Type

Gate Valve

Size

4"

Pressure

150LB

Connection

RF

Operation

HW-OP

Body Material

ASTM A351 CF8M+STL

Design Norm

API 603

Face to face dimension

ASME B16.10

Flange dimension

ASME B16.5

Test & Inspection Code

API 598

Temperature

-29 ~ 425°C

Applicable Medium

Water, Oil and Gas

Features

1. The fluid resistance is small, and the sealing surface is less scoured and eroded by the medium;

2. Simple structure, short structure length and wide application range;

3. Good manufacturing process, high temperature and high pressure resistance, and many optional materials.

Technical Drawing

4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M

Dimension Checking

4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M

Pressure Testing

4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M

Nameplate & Packing

4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M

Our Main Product Range

Dervos main products include ball valves, butterfly valves, check valves, gate valves, globe valves, and plug valves in different materials, sizes, standards and types as per clients’ requests.

4" 150LB Gate Valve API603 Stainless Steel HW-OP OS&Y CF8M
Leave A Message

If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Related Products
Stainless Steel Flanged Gate Valve
Stainless Steel Gate Valve DIN 3352 PN16 OS&Y

The stainless steel CF8M gate valve is designed with flange connection and handwheel operation per DIN 3352. The PN16 DN200 full port gate valve has OS&Y structure, resilient wedge and replaceable seat. Design Specifications Design and Manufacture: DIN 3352 End to End Dimension: DIN3202 Flange End: EN1092-1 Test & Inspection: EN12266-1/2 Design Feature -Full Bore Design -Superior flow rates & small friction loss -Low torque value for closing and opening the valve -Flexible wedge for better seating and ease of operation -Smooth finish and superior sealing for seat face -Every valve is manufactured with specific number on body for traceability Quick Detail Type Gate Valve Size DN 200 Pressure PN 16 Construction Bolted Bonnet, Rising Stem, Outside Screw and Yoke Connection Flange Connection Operation Handwheel Body Material Stainless Steel CF8M TrimMaterial Stainless Steel Temperature Range -268℃~+648℃ Medium Water, Oil and Gas Origin China Dervos Packaging Packaging is an important part we could never neglect. Dervos has a packaging process for each order to ensure a safe and clear delivery of the order.

DN200 PN40 Stainless Steel Gate Valve EN1984 HW-OP BB RF OS&Y
DN200 PN40 Stainless Steel Gate Valve EN1984 HW-OP BB RF OS&Y

DN200 PN40 gate valve is made according to EN1984 standard. The valve body is made of 1.4571+STL. It has the structural characteristics of bolt cover, elastic gate, rising stem and bracket. Its connection mode is EN1092-1/B. And it has hand wheel operation mode.

DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF
DIN DN125 PN16 Stainless Steel Gate Valve HW-OP BB RF

DN125 PN16 gate valve is made according to DIN 3352 standard. The valve body is made of 1.4408. It has the structural characteristics of bolt cover, rising stem, elastic wedge, with SS316 insulation jacket and structural length of 325mm. Its connection mode is RF EN1092-1 B1. And it has hand wheel operation mode.

2 150LB Stainless Steel Gate Valve RF CF3 API600 Handwheel
2" 150LB Stainless Steel Gate Valve RF CF3 API600 Handwheel

2" 150LB gate valve is made according to API 600 standard. The valve body is made of A351 CF3. It has the structural characteristics of bolt cover, rising stem bracket. Its connection mode is RF. And it has handwheel operation mode.

Throttle Valve
6 "1500LB throttle valve RTJ connection body LF2 API598

6" 1500LB throttle valve is made according to ASME B16.34 standard. The valve body is made of LF2. It has the structural characteristics of angular, full flow and body cover bolted. Its connection mode is RTJ. And it has hand wheel operation mode.

Ball Valve
API6D 2" 300LB Floating Ball Valve RF WCB Lever

2" 300LB ball valve is made according to API 6D standard. The valve body is made of A216 WCB. It has the structural characteristics of full bore, floating ball, anti-fire, anti-static, and anti-flying valve stem design. Its connection mode is RF. And it has lever operation mode.

RTJ, 8 2500LB DBB Trunnion Ball Valve, F51, API 6D
RTJ, 8" 2500LB DBB Trunnion Mounted Ball Valve, F51, API 6D

8" 2500LB DBB Trunnion Mounted Ball valve is made according to API 6D standard. The valve body is made of A182 F51. It has the structural characteristics of DBB Fixed Ball Valve, Full Bore, Fireproof/Electrostatic/Anti-Exposed Stem Design, Compliant with NACE MR0175. Its connection mode is RTJ. And it has Turbine operation mode with locking device.

Butterfly Valve
WCB DN100 PN40 Three Eccentric Butterfly Valve EN593 Turbine EN1092-1 B

DN100 PN40 butterfly valve is made according to EN 593 standard. The valve body is made of ASTM A216 WCB. It has the structural characteristics of three eccentric, bidirectional one to one pressure test. Its connection mode is EN1092-1 B. And it has turbine operation mode.

ASME B16.34, DN50 PN160 3 Pieces Floating Ball Valve, F NPT Connection, Lever, Body A105
ASME B16.34, DN50 PN160 3 Pieces Floating Ball Valve, F NPT Connection, Lever, Body A105

DN50 PN160 3 pieces floating ball valve is made according to ASME B16.34 standard. The valve body is made of A105. It has the structural characteristics of floating ball, full bore, fire-resistant and anti-static. Its connection mode is F NPT. And it has lever operation mode.

Trunnion Mounted Ball Valve
6"X4" 900LB Trunnion Mounted Ball Valve RTJ A105 API6D

6"X4" 90LB ball valve is made according to ASME B16.34 standard. The valve body is made of A105. It has the structural characteristics of reduced diameter, fixed ball, DIB-1, fireproof, anti-static, 3-piece. Its connection mode is RTJ. And it has worm wheel operation mode.

Gate Valve
DN15 PN40 F53 Forged Steel Gate Valve HandWheel

DN15 PN40 gate valve is made according to EN ISO 15761 standard. The valve body is made of ASTM A182 F53. It has the structural characteristics of rigid wedge, full bore, rising stem, bolted cover. Its connection mode is EN1092-1 B1. And it has hand wheel operation mode.

Needle Valve
1/2'' 6000PSI Needle Valve, FNPT Connection, Body SS316, ASME B16.34

1/2" 6000PSI needle valve is made according to ASME B16.34 standard. The valve body is made of SS316. It has the structural characteristics of pass-through type. Its connection mode is FNPT. And it has lever operation mode.

Leave a message

    If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

Home

Products

about

contact